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Kurzfassung

In den letzten Jahren haben Drohnen immer mehr an Popularität gewonnen. Ein Grund
dafür sind die Einstiegskosten, welche stark gesunken sind. Aufnahmen aus der Luft können
dadurch bereits von jedem leicht gemacht werden, dies sieht man zum Beispiel in großen
Städten, wo Touristen mit ihren kleinen und kompakten Drohnen herumfliegen, um wun-
derschöne Aufnahmen zu erstellen. Mit dieser kommenden Technologie war das Ziel der
Diplomarbeit, die autonomen Fähigkeiten von solchen Drohnen, im mittleren bis hohen
Preisbereich, zu erforschen.
Des Weiteren lag der Fokus nicht nur auf der Erforschung autonomer Drohnen, sondern
auch, wie solch eine Drohne autonom auf einem fahrenden Fahrzeug landen kann. Mehrere
Proof-of-Concepts, welche Lösungen für dieses Problem bieten, wurden im Rahmen dieser
Diplomarbeit programmiert. Zur schnelleren Entwicklung und Testung wurde zusätzlich
eine Simulationsumgebung für Drohnen eingerichtet.
Außerdem vergleichen die Autoren die beiden gängigsten Flight Stacks ArduCopter und
PX4, analysieren ihre autonomen Fähigkeiten und zeigen Probleme auf, denen sie während
der Arbeit begegnet sind. Um zu verstehen, wie diese fliegenden Fahrzeuge autonom in der
Luft navigieren können, wurde zusätzliche Zeit aufgewandt, um die grundlegenden Prinzip-
ien im Bereich der Sensoren zu erforschen, welche in Luftfahrzeuge integriert sind. Da ein
wichtiger Teil der Navigation von Drohnen auch die Hindernisvermeidung ist, setzte einer
der beiden Autoren den Fokus auf die Pfadplanung mit Drohnen und wie es möglich ist
ein Hindernis während des Fluges auszuweichen.
Am Ende wurde all dieses Wissen genutzt, um das AARD-Projekt (Autonomous Aerial Re-
connaisance Drone) zu entwickeln, ein Proof-of-Concept Softwarepaket, mit dem Drohnen
autonom auf einem fahrenden Fahrzeug landen können. Im Rahmen dieses Projekts wurde
eine Vielzahl moderner Technologien eingesetzt, wie beispielsweise das Robot Operating
System (ROS) und Docker. Durch den Aufbau des ROS-Ökosystems und der Verwen-
dung der Docker-Container-Technologie erstellten die Autoren eine Software, die auf einer
Vielzahl von Maschinen in verteilten Systemen ausgeführt werden kann. Darüber hinaus
wurde mit Hilfe von Vue.js und Rosbridge eine benutzerfreundliche grafische Oberfläche
erstellt, welche zum Steuern der Drohne verwendet wird. Abschließend wurde eine um-
fassende Dokumentation für die nächste Generation von Schülern bereitgestellt, welche
es ihnen ermöglicht, innerhalb kürzester Zeit eine Entwicklungsumgebung mit einem voll
funktionsfähigen Simulator, inklusive ROS-Integration, aufzubauen.
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Abstract

Aerial drones are becoming more and more popular, as the entry costs sink. Aerial photog-
raphy can now be done by everyone, as we can see with a rising number of tourists flying
drones in the big cities. With this new technology on the uprise, the goal of this project
was set to research the autonomous capabilities of such mid- to high-tier drones.
Therefore, a focus was set on researching, how one could enable drones to autonomousely
land on a moving vehicle. Multiple proof-of-concepts have been programmed as part of this
project and a simulation environment was set up for rapid development and testing.
Furthermore, the authors compare the two common flight stacks ArduCopter and PX4,
analyze their autonomous capabilities and show problems they ran into. In order to un-
derstand how these flying vehicles can navigate the skies, additional time was spent on
researching the fundamental principles in the field of sensors, which are integrated into
aerial vehicles. Furthermore, one author put a focus on path planning and how a drone
can avoid an obstacle while in-flight.
In the end, all this knowledge is used to develop the Autonomous Aerial Reconnaisance
Drone (AARD) project, a proof-of-concept software package to autonomously land a drone
on a moving vehicle. As part of this project, a wide variety of modern technologies were
used, such as the Robot Operating System (ROS) and Docker. By building on the ROS
ecosystem and by utilizing the Docker container engine, the authors created software, that
can be run on a wide variety of machines and in distributed systems. Furthermore, Vue.js
and Rosbridge was utilized to create an easy-to-use user interface, enabling even inexperi-
enced users to control the drone. Finally, extensive documentation has been provided for
the next generation of students, which lets them set up a development environment with
a fully fledged simulator with ROS integration in no time.

xii





Chapter 1

Introduction

Author: Konstantin Lampalzer

Transportation is evolving rapidly. Self driving cars are invading our streets and space
rockets are autonomously landing back on our planet. On the contrary to these great in-
ventions, traffic congestion is rising, as the human population increases. Looking at this,
many companies are investing vast amounts of money into research regarding alternative
transportation methods. For example Hyperloop One1, with their pods inside a vacuum
tube, or the Boring Company2 creating tunnels underneath our cities. However, not only
passengers need to be transported. Goods play another key role in our economy and there-
fore companies, like Amazon3 or DHL4 are investing into alternative means of hauling
goods. They have already shown examples using unmanned aerial vehicles to deliver pack-
ets to the customer from a warehouse or car nearby.
These are just few examples of what’s awaiting us in the near future, as companies are
revolutionizing the way we think about transportation, with the automation of systems
and processes playing a major role. Hence, investing into robotics and autonomy is now
more important than ever before.

1.1 Goal

The goal of this diploma thesis is to develop a software that enables drones to autonomously
navigate in outdoor environments, while avoiding obstacles during flight. The process starts
with the user specifying multiple waypoints. This input can be made by either giving GPS
coordinates or by simply clicking points on a map shown on the screen. Following setup,
the drone takes off and starts to navigate along a calculated path trough all waypoints.
Using sensors on the aerial vehicle, the software automatically detects obstacles obstructing
route and plans a new path avoiding the obstacle. Once the last point is reached, the drone
hovers above the target for a predefined duration and then automatically returns to the
starting location. Additionally, an interface is provided to dynamically change the waypoint
coordinates during flight. This can be used to take off or land on a moving platform. Many
challenges arise from this task, as multiple complex systems have to work together in order
to achieve this goal.

1Hyperloop One, Hyperloop One.
2The Boring Company, The Boring Company .
3Amazon.com, Inc., Amazon Prime Air .
4Deutsche Post AG, DHL Parcelcopter .
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START GOAL

OBSTACLE
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ALTERNATIVE
ROUTE

PRE-DEFINED
ROUTE

OBSTACLE

Figure 1.1: Shows an example how a drone flight may look like. It takes off from the
start and follows a pre-defined route. During flight it detects an obstacle and calculates an
alternative route around the obstacle to reach the goal successfully.

1.2 Motivation

At the time of writing this thesis, the Austrian Armed Forces manually review image
data collected by aerial photography and mark potential hazards by hand. Afterwards, an
explosive specialist gets dispatched to those locations and needs to verify the safety hazard.
As the rate of false positives is quite high, the military actively searches for new ways of
minimizing the risk to personnel, accelerating and automating the elucidation of potential
dangers.

1.3 Challenges

1.3.1 Fragility of Drones

One major flaw presented by drones is their fragility. Therefore, all systems have to be
monitored continuously and backup plans have to be made, in case something goes wrong.
For example, when a motor breaks down, the vehicle needs to detect the failure and au-
tomatically deploy a parachute to descend safely, in order to keep the payload safe and
secure. Another challenge is the big distance, that drones can move away from their control
station. This is problematic, as communication between the user and the aerial vehicle is
crucial. Therefore, backup strategies have to be in place, when communication breaks off
or gets interrupted.
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1.3.2 Obstacle Detection and Avoidance

Obstacle detection and avoidance presents another very complicated challenge, because
of the the large amounts of data generated by the different types of sensors. Afterwards
collection, the data needs to be transferred between a drone and the control station. Fur-
thermore, this vast amount needs to be analyzed and processed with low latency, in order
to avoid crashing into an obstacle, because of the high speed of the vehicles. Moreover,
recognizing an obstacle during flight also presents a challenge, as some sensors are unable
to detect some objects. For example, lasers go trough transparent objects and therefore
it’s impossible to detect them.

1.3.3 Consistency

Providing the same result every time is another difficult task.After the operator declares the
waypoints, the drone has to execute everything autonomously. This is very challenging, as
every execution takes place in different conditions. Even tough the route stays the same,
the weather conditions might have changed, or the wind speed might have picked up.
Therefore, it is nearly impossible to create a fully deterministic robot.

1.4 Autonomy

1.4.1 History of Autonomy

Automation of processes started in the 18th century with the invention of the steam engine
by Thomas Newcomen. This point marks the beginning of the industrial revolution, when
humanity began to replace human labor with machines. Starting with this event, automa-
tion grew continuously, with another mayor event being the first use of welding robots
in the car industry. With assembly lines and robots, production was faster and cheaper
than ever before. Forwarding to this century, autonomy presents a major discussion point,
with subjects like Internet of Things (IoT), Cloud Technology and Big Data changing the
present and shaping the future of industry and humanity.

1713

STEAM ENGINE

ASSEMBLY LINE

1815

1969

PROGRAMMABLE
LOGIC CONTROLLER

FUTURE

IOT, CLOUD
TECHNOLOGY, ...

TODAY

Figure 1.2: Shows the history of autonomy in a time-line. Starting from the industrial age
with the invention of the steam engine, continuing with the first assembly line, and finally
ending with future predictions.
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1.4.2 Evolution of autonomous robots

Autonomy is a versatile subject with applications in many industries. Ranging from basic
tasks like vacuuming a house or mowing the lawn to really difficult ones, such as aiding
a surgeon in a medical operation. This trend is only possible due to major developments
in microprocessors in the last decade, as processors became smaller and more powerful.
Without this, robots would not be as compact as today. This growth was predicted in
1965 by Gordon E. Moore5, who said, that the amount of transistors on a microprocessor
doubles every two years.

Figure 1.3: Shows the development of transistors per microprocessor. As predicted by
Moore’s law, the amount of transistors doubles every two years. For better visualization the
graph uses a logarithmic scale.6

1.4.3 Machine learning in autonomous robots

Another big influence on autonomous robots today, is the increasing usage of machine
learning in combination with autonomous robots. Machine learning can be broadly defined
as "computational methods using experience to improve performance or to make accurate
predictions"7. Dynamically making predictions from experience is really important, as it is
nearly impossible to create one algorithm for every situation. For example, in self driving
cars, you can’t create one program that works on every road on the planet.

5Moore, Cramming More Components Onto Integrated Circuits.
6Rupp, 42 Years of Microprocessor Trend Data.
7Mohri, Rostamizadeh, and Talwalkar, Foundations of Machine Learning .



Chapter 2

Project Management

Author: Konstantin Lampalzer

2.1 Kanban

Project management is very important in order to efficiently plan, execute and deploy a
project in short time. Therefore, we chose a Kanban Board for managing our project. We
decided on Kanban, because it is really easy to implement it for small groups, in our case
two people. Kanban is Japanese and can roughly be translated as Billboard or Sign. In
this chapter we will focus on the following 5 core concepts:

2.1.1 Visuals

Every task or User Story is written down on a visual card (For example a sticky note).
These cards then get placed on a board in their respective columns, This helps visualizing
the current status of a project and makes it easy to identify bottlenecks. Additionally, we
decided to color-code our stickers, in order to show the person assigned to a task1.

2.1.2 Columns

The board is structured in multiple columns, every column represents the current status
of a task. This helps the team to easily identify the status of every task. Furthermore, it
makes sure that every task passes all columns and therefore everything goes trough testing.
As Kanban does not specify columns, we chose the structure described in figure 2.1 for our
project.

2.1.3 Work In Progress Limits

The work in progress limits2 describe the maximum amount of cards, that can be in one
column simultaneously. This is important, as it enables the team to prioritize on a specific
groups of tasks. Therefore, a team member can focus on his own tasks, instead of getting
flooded with work. Furthermore, it helps to understand the weak points in the system. If
a column is always full, more team members might be needed, for example.

1Atlassian, Kanban - A brief introduction | Atlassian.
2Radigan, What are WIP limits?
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Backlog Todo In Progress Done

/ 4 2 /WIP Limits

Description
Initially all
tasks get

placed here

Tasks in this
column will
be performed

next

Current
tasks we are
working on

Finished
tasks are
positioned

here

Matthias Grill

Konstantin Lampalzer

Figure 2.1: This graphic shows an example of our Kanban board. The filled squares repre-
sents a task of one team member, depending on the color. Moreover, you can see our WIP
limits and the column descriptions of our board.

2.1.4 Commitment point

As explained before, all tasks initially get placed in the backlog. When a team-member
moves a task from the backlog to the next column, the team commits to working on this
task. This is called a commitment point3. After this, a task can not be altered by the
customer anymore. This makes it easier for a team to adapt to changes before starting a
task.

2.1.5 Delivery point

The Delivery Point4, is the column of the board, where a task gets moved after it has
been done. It is called Delivery Point, because the product or feature get delivered to the
customer here. One goal of Kanban is to reduce the time it takes, getting one task from the
Commitment point to the Delivery point. This duration is called "Lead Time". Another
goal is to always have a working software after a task gets past the delivery point.

3Atlassian, What is a Kanban Board?
4Atlassian, What is a Kanban Board?
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2.2 History of Kanban

Kanban was invented in the 1940s by Taiichi Ohno, an engineer at Toyota. The company
had problems with keeping the right amount of inventory for the current demand. By
visualizing everything on a board and communication between the members Toyota was
able to solve this problem and created the first version of Kanban. In the year 2007 David
J. Andersen and his team developed Kanban, how it is used today. Even now, Kanban is a
wide spread agile development method used in software development, because it is really
easy to implement it in a team and the benefits are tremendous5.

2.3 Meetings with our advisor

We tried to conduct a weekly meeting with our supervisor. First we informed him about
the status quo, checked if we accomplished our goals from the week before and planned
the next goals for the upcoming week. This made sure that we had continuous progress
and additionally helped us to spot problems in the development early on.

2.4 Working hours

Name Working hours
Konstantin Lampalzer 180
Matthias Grill 180

Table 2.1: Working hours per person

5LeanKit Inc., What is Kanban?



Chapter 3

Robot Operating System

Author: Konstantin Lampalzer

The Robot Operating System (ROS) is a framework for creating robotics applications.
It combines features like a communication infrastructure, conventions and different tools
to create a powerful instrument that aids in creating software for many robotics platforms
and operating systems.

3.1 Core Concepts

3.1.1 Packages

Every software in ROS is organized in packages1. A package is the smallest unit of build
and release. It aims to only contain enough functionality to be useful. The goal is to com-
bine packages with different functions in order to fulfill the purpose of a robot. Packages
are usually released using Debian packages. On the file-system all packages are generally
located in one workspace, with one folder for every package. Many packages tend to follow
a common structure:

packageName
package.xml:.....Contains general information about the package, such as name,
authors, version, ....
CMakeLists.txt:......File for the CMake build system used for building software
packages.
msg/:............................................Contains message descriptions.
launch/:..........Contains launch files, used for starting multiple nodes at once.
src/: ................................Source folder containing the software code.
srv/:.............................................Contains service descriptions.

3.1.2 Nodes

Nodes2 are one of the most essential parts of the Robot Operating System. Nodes can
be versatile, they subscribe information from other nodes, process data or publish new
information to other nodes. Short, a node takes data, either from a physical sensor, or
another node, processes this data and then publishes it or controls actuators. In our case,

1Open Source Robotics Foundation, Inc., Packages - ROS Wiki .
2Open Source Robotics Foundation, Inc., Nodes - ROS Wiki .

9
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we implemented multiple nodes. One is responsible for generating a point cloud with sensor
information from a depth camera. Then we have some other nodes processing this point
cloud and generating a map. Following we have multiple nodes taking this map and creating
a path trough the environment and finishing it, we have software taking this path and
controlling the drone.

Figure 3.1: Shows the ROS computation graph. Rectangles represent the topics and the
ellipses are the nodes.

3.1.3 Topics

Topics3 are used for communicating between nodes. One major feature is the anonymous
publishing of information and subscribing to this data from another node. These nodes do
not know who they are talking to. This means, that nodes can work under the Fire-and-
Forget mentality. If one node needs to know specific information, it can easily subscribe
to a topic and doesn’t have to worry about where the data is coming from. This enables
nodes to be independent of each other, as the data just needs to be present in a serialized
format, without caring about who is providing the data.
The Robot Operating System provides the command-line tool rostopic4 for displaying
information about Topics. It provides following functionalities:

rostopic
bw [topic].....................................display bandwidth used by topic
echo [topic]..................................print messages of topic to screen
hz [topic]......................................display publishing rate of topic
info [topic] ................................. print information about the topic
list.................................................display list of active topics
pub [topic] [type] [args]...............................publish data to topic

3.1.4 Services

In contrast to topics, services5 are used for requests and replies between nodes and clients. If
a client sends a request message to a node, the call is blocking, meaning that the client will
wait till he gets a response from the node. One big advantage of services is the awareness
of each other, so one node knows who it is talking to. In contrary to topics, services are
based on a Request-Response principle.
The command-line tool rosservice6 can be used to interact with services:

rosservice
call [service] [args]........................display bandwidth used by topic

3Open Source Robotics Foundation, Inc., Topics - ROS Wiki .
4Ken Conley, rostopic - ROS Wiki .
5Open Source Robotics Foundation, Inc., Services - ROS Wiki .
6Ken Conley, rosservice - ROS Wiki .
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info [service] ............................... print information about a service
list [topic]................................................ list active services

3.1.5 Messages

ROS nodes communicate with each other by publishing messages7 to a topic. These mes-
sages are defined in the msg folder of a package with one file for every message type. The
Robot Operating System (ROS) provides a message description language used in these
files. In order to enable multiple ROS tools to convert these files into different program-
ming languages. Messages are versioned by creating a MD5 hash of the message definition
file. A node can only publish or subscribe to a topic, if the MD5 hash and the message
type match.

3.1.6 Master

The ROS Master8 is responsible for managing the communication between all nodes. He is
aware of which nodes are available and which are subscribing or publishing data from topics
or services. Moreover, the master is accountable for publishing the recognized information
to all other nodes in ROS. Right after the nodes found each other, with the help of the
ROS Master, they build up a peer-to-peer connection for communication.

3.1.7 Bags

Rosbags9 are comparable with recordings, a bag subscribes on one or more topics in a given
time and saves the received information, including a time stamp, in a bag file. Now the
data in rosbags can be easily reproduced in ROS for debugging or testing. In our specific
case, we have thousands of sensor data in just one test scenario. So if we want to reproduce
a certain case at a specific time, for finding the error in our program, we load our bag file
with the help of rosbag into ROS. Now we can simply start debugging our software.

3.1.8 Parameters

The Robot Operating System provides a way to dynamically configure nodes using pa-
rameters10. These can be read from a node during runtime and provided by the parameter
server. This server is run by the master and can be accessed via rosparam11 command line
tool. This enables developers to change the settings of a program on the fly. Additionally,
parameters can be specified before starting a node using a launch file.

1 <launch>
2 <node name="odomProviderArdrone" pkg="libaerial4you" type="odomProviderArdrone"
3 clear_params="true" output="screen">
4 <param name="odomPub" value="ardrone/odometryProcessed" />
5 <param name="odomSub" value="ardrone/odometry" />
6 </node>
7 </launch>

7Open Source Robotics Foundation, Inc., Messages - ROS Wiki .
8Open Source Robotics Foundation, Inc., Master - ROS Wiki .
9Open Source Robotics Foundation, Inc., Bags - ROS Wiki .

10Open Source Robotics Foundation, Inc., Parameter Server - ROS Wiki .
11Ken Conley, rosparam - ROS Wiki .
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3.1.9 Transform

As robots typically have multiple 3D coordinate-systems, a system is needed to keep track
of those frames over time. ROS provides this functionality via the transform library12. It
enables the user to transform points, vectors, etc... between multiple coordinate systems
at any point in time. This helps developers to easily calculate the relationship between
two objects. ROS stores transform in a tree-structure and communication of transforms is
implemented via the /tf topic.

world

map

base_link

rotor_0 rotor_1 rotor_2 rotor_3imu_linkcamera_link

camera_depth_framecamera_rgb_frame

Figure 3.2: Shows the transform tree representing the relationships between the world, the
drone and the depth camera.

3.2 Community

One big benefit of using ROS is the large community providing open source software. For
example, TU Darmstadt provides a big software-stack called hector with packages such as
hector-slam or hector-quadrotor, which is used in controlling UAVs. Furthermore, the ROS
industrial consortium is an open source project with the aim of improving manufacturing
and automation. Additionally, ROS provides a large list of open-source packages on their
Website13.

3.3 Docker

We decided to use Ubuntu 18.0414 as our development operating system, because it’s easy
to use and it has a large amount of software, that can easily be downloaded. Furthermore,
ROS recommends using a Linux-based operating system. This presented some challenges to
us, as some packages were not supported under Ubuntu 18.04 with ROS-Melodic. Therefore,
we decided to use Docker15 for virtualizing some packages we used. Docker is a software,
that enables so called "containerization". It is used to run "containers", that are isolated
from each other, which can communicate trough pre-defined channels. This helps us to
provide the perfect environment for our ROS nodes and packages, while still having the
ability to use different versions of ROS and multiple operating systems at the same time.
Additionally, this enables us to develop on multiple computers at the same time, as we only
need to set up the correct environment for a package once. To manage all our containers

12Tully Foote, Eitan Marder-Eppstein, and Wim Meeussen, tf2 - ROS Wiki .
13http://www.ros.org/browse/list.php
14Canonical Ltd., Ubuntu 18.04.1 LTS (Bionic Beaver).
15Docker Inc., Docker .
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we used Docker Compose16. Compose is a tool that enables us to start multiple containers
with one command. First, we created Dockerfiles17 for all our packages. Then we made one
docker-compose file, that described our environment. Finally, to start all our ROS-Nodes,
we just need to run "docker-compose up".

3.4 Simulation

"A simulation is the imitation of the operation of a real-world process or system over
time."18 Simulators are one of the most important tools in the library of a developer. It
allows him to rapidly design, develop and test robots. Furthermore, Simulators will be
even more important in the future, to train artificial intelligence (AI) models with realistic
data. Therefore, ROS provides the gazebo_ros_pkgs19 interface to communicate with the
Gazebo20 simulator. Multiple physics engines, a sophisticated 3D Graphics engine and
extensibility trough plugins are only some features provided by the simulator. We used
the simulator to test our Drone in an realistic environment. Furthermore, to simulate the
firmware running on the drone, we used the Software in the Loop (SITL) simulator21

provided by ArduPilot. To put our robot into the Gazebo simulator, we first had to create
an XML file describing our robot. There we defined all our rotors, sensors and physical
properties of our Quadcopter. We added a Inertia Measurement Unit, artificial GPS and
a depth camera to our drone, to make it as realistic as possible.

Figure 3.3: Shows the Gazebo simulator with our simulated drone looking at an apartment
complex. A depth camera is mounted at the bottom of the vehicle providing data to ROS.

16Docker Inc., Docker Compose.
17Docker Inc., Dockerfile reference.
18Banks, Carson, and Nelson, Discrete-event System Simulation.
19John Hsu, Nate Koenig, and Dave Coleman, gazebo_ros_pkgs - ROS Wiki .
20Open Source Robotics Foundation, Inc., Gazebo.
21ArduPilot Dev Team, SITL Simulator (Software in the Loop).
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3.5 Visualization

Visualization is becoming more important every year. Sectors such as medicine, science,
education or robotics use it on a daily basis. Collecting sensor data from a robot and
generating graphics from this can be a very useful tool for a developer. Graphics are often
used in debugging a software, saving many hours of work in developing an application.
Developing on a robot can be very difficult, without knowing exactly, how the robot sees
his environment. Debugging, by looking at numbers in a file, can be very difficult, unless you
have an intuitive understanding of vectors, coordinate frames and quaternions. Therefore,
taking this data and visualizing it in a graph, for example, can cut down on the development
time tremendously.
The Robot Operating System help developers in visualizing, by providing two tools out of
the box:

3.5.1 RVIZ

RVIZ22 is a 3D visualizing tool for robots enabling us to look at the world through the
robot’s eyes, whether those eyes are cameras, lasers or other sensors. RVIZ can display the
most common types of sensor and state information out of the box by using specialized
displays. These are some data types, that can be visualized:

• Point clouds
• Camera data
• Laser scans
• Odometry poses

Additionally, RVIZ gives developers the ability to show primitives, like cubes, arrows and
lines in the 3D-World by using visualization markers. This combination of sensor data and
custom markers make RVIZ a powerful tool for the development, as you can understand,
what the robot is seeing, thinking and doing.

Figure 3.4: Shows an example of a visualization in RVIZ. The drone uses a depth camera,
mounted on the bottom side for scanning a house wall.

22Dave Hershberger, David Gossow, and Josh Faust, rviz - ROS Wiki .
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3.5.2 rqt

Interaction with a user is another important part of developing a product. Therefore, ROS
provides rqt23, a Qt-baseed framework, for GUI development. A developer can create his
own plugins, or use some existing ones to create his GUI. This can be done, by running
the plugins as dockable windows within rqt. These are some plugins provided by rqt, used
to visualize information:

rqt_plot ......................................Generates a 2D plot of scalar values
rqt_tf_tree ....................GUI plugin for visualizing the ROS TF frame tree
rqt_pose_view ................................................Visualizes 3D poses
rqt_image_view ..................................................Displays images

23Dirk Thomas, Dorian Scholz, and Aaron Blasdel, rqt - ROS Wiki .
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ArduPilot

Author: Matthias Grill

ArduPilot1 is an open source autopilot software which is developed by professionals and
enthusiasts. One big advantage of the ArduPilot firmware is the compatibility with many
vehicle systems, no matter if conventional airplanes, hexacopters or submarines. This makes
ArduPilot one of the leading stoftware-stacks used in developing remotely controlled robots.
Currently, the ArduPilot firmware supports 4 different plattforms:

• ArduCopter (Multicopters)
• ArduPlane (Planes)
• ArduRover (Ground vehicles and boats)
• ArduSub (Underwater vehicles)

ArduPilot needs 3 key components to transform almost any machine into an autonomous
vehicle:

4.1 Hardware

In order to send signals to motors or servos, ArduPilot supports a large variety of sensors,
which can be used to calculate the current status of the vehicle. This includes, but is not
limited to, Accelerometer, Gyrometers, Barometers, GPS and many more. All this data
gets collected by a controller, which runs the firmware. To suit everyone, many open- and
closed-source options are available.

4.2 Firmware

The firmware collects all the data provided by the sensors and a user in order to make a
calculated decision on how to control the outputs such as a motor or servos. This firmware
is compatible with a variety of controllers and provides a unified software for different
robots. It uses various algorithms, such as a extended Kalman filter to predict the state of
a vehicle and act accordingly. ArduPilot is installed in over 1 000 000 vehicles world-wide
and provides different tools to log data and simulate a vehicle. Additionally, as ArduPilot
is open-sourced on Github, mistakes can easily be spotted and corrected by community
members. Furthermore, it can be audited to ensure compliance with security requirements.

1ArduPilot, ArduPilot Open Source Autopilot .
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4.3 Ground Control Software

A good ground control software (GCS) is the counterpart to the ArduPilot firmware. It
offers necessary features for the user, like setting up, configuring, testing or tuning an
Unmanned Aerial Vehicle (UAV). With an advanced GCS you can create autonomous
missions, which is essential for this thesis. There are many GCS’s available on the market,
the most common ones are Mission Planner and QGroundControl.

4.3.1 Mission Planner

Mission Planner2 is an open-source application. It is one of the GCS’s, as it is maintained
by ArduPilot and officially recommended for use development environments. The biggest
disadvantage of this software is its compatibility with Windows only. We are using Linux
for developing our project because, it is highly recommended to use ROS in an Linux
environment. Consequently, if we want to use Mission Planner, we have to reboot our
system. Obviously, this stops us from using Mission Planner and ROS at the same time.

4.3.2 QGroundControl

Another ground control software is QGroundControl3, which provides almost the same fea-
tures as Mission Planner. In contrary to Mission Planner, QGroundControl supports many
platforms, such as Android, Linux or Windows. Additionally, mission planning is more
user-friendly and supports a large variety of options, which can be used to autonomously
fly a multi-copter.

4.4 MAVLink

MAVLink4 is a messaging protocol designed for communication between different drones
and ground-control-stations and on-board hardware. It uses the publish-subscribe and
point-to-point design patterns. Therefore, data is transmitted via topics, while configura-
tion information is communicated point-to-point. MAVLink provides a reference message
set5, which is implemented in most ground control stations. These message sets are defined
in XML files, which are used to generate MAVLink libraries for all supported programming
languages. These are some key-features of MAVLink:

1. Adaptability: MAVLink supports a large amount of programming languages and
micro-controllers.

2. Efficiency: As MAVLink only needs a 8 byte of overhead, it can be used in environ-
ments with limited bandwidth.

3. Reliability: MAVLink has been used in a wide variety of applications. Therefore, it
is field-tested and can be relied upon. Furthermore, it includes systems to detect
dropped or corrupted packets.

2ArduPilot Dev Team, Mission Planner Home.
3QGroundControl, QGroundControl .
4Dronecode Project, MAVLink .
5Dronecode Project, Inc., MAVLINK Common Message Set .
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4.4.1 Telemetry

Telemetry is one of the most important systems in an unmanned aerial vehicle (UAV). It
gives the user the ability to communicate with his drone and remotely operate it. In our
thesis we decided to use a 3DR Telemetry Radio v26 together with the Pixhawk 1 flight
controller7. We chose this radio, because it is a relatively cheap option with a maximum
range of 500 meters, which was enough for us. This range can change, depending on your
surroundings. One important part in choosing a radio, is checking the regional laws, as
most countries regulate the allowed radio frequencies8. In our case we are using the low
power device 433 MHz (LPD433) ultra high frequency (UHF) band which allows a license
free communication in Europe. LPD433 provides 69 channels and a minimum frequency of
433.075 MHz to a maximum frequency of 434.775Mhz.

Figure 4.1: Describes the structure of an ArduPilot controlled drone. At the bottom, are
the flight controllers with their Operating System. They communicate to ArduPilot via the
Hardware Abstraction Layer (HAL). The HAL creates an interface between ArduPilot and
the board-specific features of a flight controller. Afterwards, all data from the controller
gets put into the shared libraries. Those libraries are shared amongst the four vehicle types
supported by ArduPilot and include sensor drivers, estimation and control code. Finally, the
vehicle-specific code is the firmware for the four types of vehicles.

6ArduPilot Dev Team, SiK Telemetry Radio.
7PX4 Dev Team, Pixhawk 1 · PX4 User Guide.
8ArduPilot Dev Team, Telemetry Radio Regional Regulations.
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PX4

Author: Matthias Grill

PX41 is an opensource autopilot software for unmanned aerial vehicles. It provides many
different tools to develop drone applications. PX4 was first developed in the PIXHAWK
project at the ETH Zurich, which is the Swiss Federal Institute of Technology in Zurich,
Switzerland2. Today this project has more than 300 global contributors and is one of the
most popular control software in the drone space. Furthermore, PX4 is part of Dronecode3

which is a project hosted under the Linux Foundation. Further well-known projects which
are hosted by Dronecode are MAVLink4, QGroundControl5 and SDK6.

5.1 Flight Modes

The flight mode of an UAV defines the drones behaviour. For each task there is usually a
specific flight mode. PX4 categorises all flight modes in three groups7:

5.1.1 Manual Flight Modes

As the name implies, if the drone is in a manual flight mode the user can manually control
the drone. Mostly this happens via a RC control. But there are small differences between
theses flight modes. More experienced people will use a flight mode with direct passthrough
to the actuators, while beginners should choose a mode which is less responsive on fast
stick-position changes. Following manual flight modes are available in PX4 for multirotors:

• Manual / Stabilized
• Acro
• Rattitude

5.1.2 Assisted Flight Modes

If the drone is in a assisted flight mode the user also has to control the drone via a RC
control. The big difference to the manual flight mode is that you will have some automatic

1Dronecode Project, Inc., Open Source for Drones.
2Meier, The History of Pixhawk .
3Dronecode Project, Inc., Dronecode SDK .
4Dronecode Project, Inc., Introduction · MAVLink Developer Guide.
5Dronecode Project, Inc., QGROUNDCONTROL.
6Dronecode Project, Inc., Open source Drone end-to-end solutions.
7Dronecode Project, Inc., Flight Modes · PX4 Developer Guide.
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assistance. Which leads to better control of your drone. For example, if the UAV has to
fly in strong wind. PX4 provides following assisted flight modes:

• AltCtl (Altitude control)
• PosCtl (Position control)

5.1.3 Auto Flight Modes

The last category are the auto flight modes. These modes need no user input so the drone
will fly autonomously. Auto flight modes are commonly used for flight missions.

• Auto_Loiter (Loiters around the current position)
• Auto_RTL (Returns to the home position and loiters)
• Auto_Mission (Executes predefined mission)

5.2 QGroundControl

QGroundControl is another popular project of Dronecode. It is a ground control station
and can be used to flash the PX4 software onto a flight controller. Moreover, you are able to
setup and configure your vehicle. In contrast to the ArduPilot firmware the configuration
of a drone is much easier and more beginner friendly. Furthermore, in QGroundControl
you see real-time information about the drone, for example the altitude, the speed or
the current location which is marked on a map. One of the most important feature of this
ground control station is the creation of drone missions. QGroundControl provides a simple
user interface (UI) where it is possible to create, plan and save your drone missions.

Figure 5.1: This graphic shows an example of QGroundControl. On the right side and on
the top bar you can see some real-time information about the drone.
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5.3 Simulation

PX4 also offers a good support for simulating a drone8. Simulation is a safe and easy way
to test your new code instead of immediately fly outdoor in the real world. Two different
types of simulation are supported by PX4:

• Software In The Loop (SITL) simulation
• Hardware In The Loop (HITL) Simulation

The SITL simulator enables the possibility to simulate your drone without any hardware,
so you can develop a drone without having any flight controller. In contrast to SITL, the
HITL simulator simulates everything on the real flight controller. Simulating a drone in
a simulation is not simple, but PX4 provides a really good documentation which includes
different examples of how to simulate a drone.

5.3.1 Supported Simulators

PX4 supports four different simulators. Nevertheless, using the Gazebo9 simulator is highly
recommended for the most purposes. Gazebo makes it possible to simply simulate one or
more robots, in our case multiple drones, in an simulation environment. Furthermore, PX4
provides much documentation of how to run PX4 in combination with Gazebo, which
makes it really beginner-friendly.
JMAVSim10 is another simulator supported by PX4. This simulation is not as powerful
as Gazebo but still good enough for simple tasks like take off or landing. Furthermore,
jMAVSim can be used for either SITL or HITL simulation.
PX4 also supports the AirSim11 simulator which is an open-source, cross plattform simula-
tor developed by Microsoft AI & Research12. This simulator is built on the Unreal Engine13

and Unity14 this is one reason why this simulator is very resource intensive and requires a
powerful PC. Like the other simulators, AirSim also supports the SITL and HITL simula-
tion.
The last supported simulator is XPlane15. In contrast to the others, this simulator does not
support multirotors, just planes. Moreover, only HITL simulation with XPlane is supported
by PX4. Nevertheless, it is a powerful simulator which offers very realistics flights.

8Dronecode Project, Inc., Simulation.
9Open Source Robotics Foundation, Gazebo.

10PX4, Simple multirotor simulator with MAVLink protocol support .
11Microsoft, Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Mi-

crosoft AI & Research.
12Microsoft, Microsoft Research AI (MSR AI).
13Unreal Engine.
14Technologies, Unity .
15X-Plane 11 Flight Simulator | More Powerful. Made Usable.



Chapter 6

Sensors

Author: Konstantin Lampalzer

Sensor equipment is one of the most important part in a robotics system. With sensors
the robot is able to perceive his environment and act according to changes. Mapping the
surroundings and calculating paths around obstacles is an essential part in this thesis.
Therefore, we decided to describe some senor systems we used and present the challenges
we had during the development phase.

6.1 Altimeter

An altitude meter (short: altimeter) is a sensor used to determine the altitude of an object
relative to a fixed height. The sensor does this by measuring the atmospheric pressure at
the current height which can then be used to calculate the altitude. One way of measuring
the pressure at the current height is a piezoresistive pressure sensor. It uses piezoresistive
material in combination with a diaphragm. This diaphragm changes shape depending to
the external pressure. This change can then be measured with the piezoresistive sensors.

Figure 6.1

Figure 6.1 shows the structure of an altimeter looking
down on the top of the altimeter. In the middle of the
sensor is a sheet of a flexible material anchored at its
periphery. This material moves up or down
depending on the pressure. At the sides of this
material are piezoresistive senso rs measuring the
change of resistance in the piezoresistor.1

1https://www.radiolocman.com/review/article.html?di=148185
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Figure 6.2

Figure 6.2 shows the cross-section
of an altimeter. The pressure above
and below the diaphragm are the
same. Therefore, the material does
not change its shape.2

Figure 6.3

Figure 6.1 displays the cross-section
of an altimeter with pressure being
applied from above. Therefore, the
diaphragm moves down slightly,
applying tensile stress to the
piezoresistors.3

Using pressure sensors in order to calculate the current height can be effective in outdoor
use, but several problems occur when flying over uneven terrain. Altimeters get calibrated
reference pressure set at ground level. Therefore, it only calculates the height difference
to this reference. This means, that it does not provide the height above ground. This can
lead to drones crashing into the ground if it is flying in uneven terrain. Another problem
can occur if the altimeter is used indoors. As most modern buildings have some form of
ventilation system, the pressure inside a room can fluctuate often. This can also occur, if
someone opens a window or a door. Therefore, the use of altimeters relying on pressure is
not recommended.

6.2 Accelerometer

Accelerometers are sensors, that measure acceleration, meaning the change of velocity of
an object in reference to a free fall. Therefore, an accelerometer at rest will measure the
acceleration g upwards, where g denotes the constant of gravitation. These sensors are
usually developed as micro-electromechanical systems (MEMS), meaning they are really
small in size and have moving parts in them. There are different types of accelerometers but
generally speaking they are made using capacitive plates. Some of those plates are fixed,
while others are moving, attached to springs. If forces are applied to the sensor, these
plates start moving, changing the distance between the plates. These changes in distance
result in a change of capacitance between plates, which can be measured to determine the
acceleration applied to the sensor.

2https://www.radiolocman.com/review/article.html?di=148185
3https://www.radiolocman.com/review/article.html?di=148185
4http://www.instrumentationtoday.com/mems-accelerometer/2011/08/
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Figure 6.4: Structure of an accelerometer. If force is applied to the sensor, the distances
C1 and C2 change. These changes in distance result in a change of capacitance, between
the movable mass and the fixed plates. This change in capacitance can then be used to
determine the acceleration in one axis. 4

6.3 Satellite Navigation Systems

Satelite navigation systems give a user the ability to calculate their current location (lon-
gitude, latitude, and altitude/elevation). There are multiple components to such systems:
The sender (a satellite) and the receiver. The satellites continuously transmit navigation
signals, which then get received by a receiver. These signals contain the necessary infor-
mation to compute the travelling time from satellite to receiver and the position of the
satellite. If the user receives this information from four or more different satellites, he can
use it to calculate his own location. There are currently multiple systems run by different
countries, which can be publicly used by anyone.
Each of these systems use different signals and wavelengths but they are all based on the
same principle.

1. The GPS receiver detects the signal from several satellites. Each transmission is time-
tagged and contains the satellites position. This time-tag is called time of transmis-
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Name Owner
BeiDou China
Galileo European Union
GLONASS Russia
GPS United States
NAVIC India
QZSS Japan

Table 6.1: Publicly available satellite navigation systems

sion. Additionally the receiver saves the time of arrival of every transmission.
2. The time of arrival is then compared to the time of transmission to calculate the

time difference.
3. It is then multiplied by the speed of light to obtain the range between the sender

and the receiver.
4. Each range puts the user on a sphere around the satellite.
5. Intersecting several spheres can then be used to finally calculate the user position.
In order to receive a signal from a satellite the receiver needs a line of sight to the

sender. This results in several problems, that can reduce the accuracy of satellite navigation
systems. One of the biggest problems is the use of these systems in urban areas. If the user
is near a high building or even under a tree, the line of sight could be blocked. Furthermore,
there can be problems caused by reflections created from the signals bouncing off of different
buildings.

6.4 Gyroscope

Figure 6.5

A gyroscope sensor measures the angular
rate of an object. To do this it uses the
Coriolis Effect. First, an alternating current
is used to oscillate a mass. If an external
angular rate gets applied to this mass, a
force will occur, displacing the mass. This
force, marked in blue in figure 6.5, is
perpendicular to the oscillating direction,
marked in red, and the angular rate, marked
in green. Similar to the accelerometer this
movement causes a change in capacitance
between the movable mass and fixed plates
around the moving mass. This can then be
measured and used to calculate the
corresponding angular rate.

6.5 Filtering

In order to produce useful measurement values from a sensor, we have to reduce out
the noise generated by those sensors. For example, this noise can arise, when two cables
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are interfering with each other. Noise can also occur in the measurement. If we put our
magnetometer right next to the power cable on the drone, this could also generate incorrect
signals. To filter this out, we decided to compare some algorithms.

6.5.1 Low-pass filter

The simplest form of filters is a Low-pass filter. It is designed to let all frequencies below a
certain threshold pass, while dampening everything exceeding the maximum allowed range.
It is really easy to implement this filter in python, as a vast amount of libraries provide
some form of low-pass filter. One example can be seen in 1

Listing 1: Example of an low-pass filter implemented in python. The filter is already pro-
vided by the scipy library5

1 def butersworth(y):
2 # First, design the Buterworth filter
3 n = 2 # Filter order
4 Wn = 0.4 # Cutoff frequency
5 B, A = signal.butter(n, Wn, output='ba')
6

7 # Second, apply the filter
8 return signal.filtfilt(B,A, y)

6.5.2 Moving Average Filter6

The moving average filter is one of the most common filters used in signal processing.
Mainly, because it can be implemented and understood easily. As the name already implies,
the moving average filter takes a number of points from the input and then averages them.
This number of points is defined by the window size. For example, if we choose a window
size of 5, we take two values before and two after our current measurement and calculate the
average of them. This means, we choose the points symmetrically around our current value.
Another option would be to only take one side and average them. For our symmetrically
moving window, we would have the following formula:

yi =
1

M
∗

M−1
2∑

j=−M−1
2

xi+j

Figure 6.6: Formula for the moving aver-
age algorithm

Variable Description
y filter output
x sensor output
M window size

Figure 6.7: Variables used in the calcula-
tion of the moving average filter.

6.5.3 Moving Median Filter

Another form of filtering is the moving median algorithm. Like the moving average de-
scribed before, it has a window that is moved through the sensor data, but instead of

5SciPy developers, SciPy.org .
6Smith, Digital Signal Processing .
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calculating the average, we take the median. This means, we take all elements in the win-
dow, sort them and then take the element in the middle. If the amount of elements is even,
we would just average the two elements in the middle. In contrary to the moving average,
the moving median is less sensitive to short spikes in the data. Although this might seem
like an advantage, if the spike is longer than the window size, the output will be effected
more that in the moving average. Another disadvantage of the median filter is the need to
sort all the data. This makes it computationally more intensive than the average, especially
with large window sizes.

6.5.4 Exponential Filter7

Another really simple filter is the exponential filter. It is intended to work like a low-pass
filter removing high frequency noise. Comparing it to the last two filters, it has the similar
effect, that it introduces a lag into the system. Another advantage of the system is it’s low
memory requirement. It only needs to store the last predicted value.

yi = a ∗ yi−1 + (1− a) ∗ xi

Figure 6.8: Formula for the exponential
filter

Variable Description
y filter output
x sensor output
a smoothing constant

Figure 6.9: Variables used in the calcula-
tion of the exponential filter.

7Standards, (U.S.), and SEMATECH, NIST-International Sematech E-handbook: NIST Handbook 151.
Dataplot : NIST Handbook 148 .
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6.5.5 Spike Filter

The idea of the spike filter is to remove values exceeding a predefined threshold, while
keeping everything in the range as it is. The values outside the range only get accepted,
once they have occurred often enough. If someone would use this in a series of filters, it is
recommended to place it at the first position, as other filters would dampen the spike. The
filters following in the path would not get affected, as the range is normally not exceeded
under normal operation. This filter could be implemented as follows:

1 for i in range(1, N):
2 if abs(xi - yi−1) > M and c < n:
3 c = c + 1
4 yi = np.average(np.array(y[i-c:i]))
5 else:
6 c = 0
7 yi = xi

Listing 2: Example code on how to imple-
ment a spike filter.

Variable Description
y filter output
x sensor output
M maximum change

n
maximum number of
extreme changes

Figure 6.10: Variables used in the calcu-
lation of the spike filter.

6.5.6 Summarizing

To compare all the filters to each other, we used them all on the data set represented
in figure 6.11. By looking at the different curves, we can see that the moving mean and
moving average look pretty similar to each other. They could both successfully eliminate
most of the noise with only leaving some spikes in the data. Looking at the exponential
filtering, we can see that it pretty much retained the original, but damped it a bit. Lastly,
the spike filter did its job pretty well, leaving most of the original data, while removing
some spikes.
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Figure 6.11: All filter algorithms described in this section applied to the same data set.
Each curve is offset + 50 units to the last algorithm on the y-axis.



Chapter 7

Pathfinding

Author: Matthias Grill

Pathfinding with unmanned aerial vehicles (UAVs) is a major part of this diploma thesis.
As a short reminder, our drone has to fly a predefined route. During the flight, the drone
scans its environment using sensors, generating a map. Additionally, it detects obstacles on
its way. Afterwards, if the UAV found an obstacle, it has to generate a new path avoiding
the obstruction in its route, preventing a crash. We use Pathfinding algorithms, in order
to find the shortest route around obstacles.

7.1 Concept

Pathfinding is an autonomous process for finding a path from one given start point to
another end point on a map. This map contains multiple obstacles which have to be
avoided. Moreover, as different routes exist, from start to finish, the goal is to find the
shortest one.

Figure 7.1: These figures show two examples of pathfinding. The green dots are representing
the start points, the red ones, the end points and the gray dots, the walls. As you can see,
these pathfinding algorithms found the shortest way from the start to the end, successfully
avoiding the obstacles. These figures were created using a web tool1.

1https://qiao.github.io/PathFinding.js/visual
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7.2 Applications of Pathfinding

7.2.1 Pathfinding in Computer Games

Nowadays, most computer games are making use of Artificial Intelligence (AI). Therefore,
movement of AIs need to be as realistic as possible to provide the best gaming experience.
These AIs are often called NPCs or non-player characters and need pathfinding algorithms
to efficiently navigate around the world. The next figures represent the most common ways
to simplify the world for navigation.2.

Figure 7.2: Waypoints3 Figure 7.3: Grid4 Figure 7.4: Navigation
Mesh5

Moreover, certain paths in the game world are not as fast as other ones. For example,
driving on a motorway is much faster than on a gravel path. Therefore, the pathfinding
algorithm needs to have some sort of weighting implemented, to prioritize some routes
before others. The most commonly used algorithm in computer games is A*, which is
explained in detail later in this chapter6.

7.2.2 Pathfinding in Exploration

Another important application of pathfinding is the exploration of new territory. Often
robots with specialized algorithms are used, instead of humans. For example, NASA7 ex-
plores Mars with the help of rovers. There are many reasons why NASA sends robots
for exploring, rather than humans. First of all, there is the minimized risk endangering a
person, as most planets provide harsh climate conditions. Furthermore, sending robots to
planets is much cheaper, as they can withstand higher forces of acceleration and can be
transported more easily than humans. Lastly, if a robot mission is completed, NASA does
not have to organize an expensive return from Mars to Earth8.
Aside from other planets, there are difficult places on earth aswell. For example, drones or
ground-based-robots are used in mapping a whole cave for finding minerals or underwater
robots which explore undersea caves910. All these projects are making use of pathfinding
algorithms, for instance avoiding obstacles and planning a new path around them or just
to find the shortest way from point A to B.

2Graham, Ross; McCabe, Hugh; and Sheridan, Stephen, Pathfinding in Computer Games.
3http://jceipek.com/Olin-Coding-Tutorials/pathing.html
4http://jceipek.com/Olin-Coding-Tutorials/pathing.html
5http://jceipek.com/Olin-Coding-Tutorials/pathing.html
6Graham, Ross; McCabe, Hugh; and Sheridan, Stephen, Pathfinding in Computer Games.
7Kristen Erickson, The Mars Rovers :: NASA Space Place.
8Kristen Erickson, Why do we send robots to space? :: NASA Space Place.
9Sreeja Banerjee, A COMPARATIVE STUDY OF UNDERWATER ROBOT PATH PLANNING AL-

GORITHMS FOR ADAPTIVE SAMPLING IN A NETWORK OF SENSORS .
10Himangshu Kalita; Steven Morad; Aaditya Ravindran; Jekan Thangavelautham, Path Planning and

Navigation Inside Off-World Lava Tubes and Caves.
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Figure 7.5: This figure shows the Mars2020 rover from NASA. The robot will be in use in
2021 on the Mars. Goal of this mission is finding more information about the past life on
the planet.11

7.2.3 Pathfinding in industrial applications

Robots carrying goods in warehouses are already reality. For instance, Amazon Robotics12

makes use of this. Automated Guided Vehicles (AGV) search for the ordered products in
the warehouse and bring them to the packing station autonomously, where humans put
the goods in a packet. Amazon Robotics uses pathfinding algorithms13 for planning the
most efficient paths and without crashing in another AGV. Moreover, another important
application in industry are robotic arms. These are used in different sectors for example in
assembly line production where they have to accomplish various tasks. Depending on the
task the arm can be built versatile. For example a gripper with two, three or five fingers.
MoveIt!14 is a motion planning framework which runs on top of the Robot Operating
System (ROS). It allows us to plan, manipulate and visualize the motions of a robot arm
in a 3D environment. Here pathfinding comes into use. If you want to move the arm
from shelve A to B, MoveIt! calculates the shortest path to it and also takes account to
obstacles. The framework has many advantages, one of it is the wide range of different
provided functions. Additionally, because it is an open source framework, MoveIt! has a
large community and many projects15. This improves quality and security because bugs
can be found more easily. However, there are also disadvantages and one of the biggest is
that it is not beginner-friendly because of the large number of features and the complexity.
This does not mean that there is no latest available documention. On the contrary, there is
much of it on their website, but you will need much time to install and understand MoveIt!.

11https://mars.nasa.gov/mars2020/mission/rover
12Amazon Robotics, Amazon Robotics.
13Jun-tao Li; Hong-jian Liu, Design Optimization of Amazon Robotics.
14MoveIt! Motion Planning Framework .
15Related Projects | MoveIt!
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7.3 Pathfinding Algorithms

Depending on the task various pathfinding algorithms are available today. The most used
and known ones are the Breadth First Search, the Dijkstra’s Algorithm and the A* (A star)
search algorithm. The most simply search algorithm is the Breadth First Search. Adding
some features to it will turn it into a complex A* search algorithm. All these algorithms
are graph search algorithms. This means that you need a graph as input.

7.3.1 Breadth First Search

A Breadth First Search algorithm explores the graph in every direction, beginning from
the start point. The main purpose of this algorithm is to find the shortest path from start
to end, but this algorithm can be used for generating a map as well. Its main feature is
the frontier, which is an expanding ring. It is implemented with a simple queue. At the
beginning the frontier starts with the starting point. Afterwards, it picks a location from
the frontier queue and removes it. Now you have to look at the neighbors which are not
already visited. Add the new locations to the frontier and mark them as visited. Repeat
this process till the frontier queue is empty. This process is also called flood fill.

Listing 3: Example code of a Breadth First Search implemented in Python.

1 frontier = Queue()
2 frontier.put(start)
3 visited = {}
4 visited[start] = True
5

6 while not frontier.empty():
7 current = frontier.get()
8 for next in graph.neighbours(current):
9 if next not in visited:

10 frontier.put(next)
11 visited[next] = True

7.3.2 Dijkstra’s Algorithm

As the name implies, the algorithm was published by Edsger W. Dijkstra (/daIkstr@/) in
1959. Goal of the Dijkstra’s Algorithm is to find the shortest path between one node and
every other node in a graph. Difference between Breadth First Search and Dijkstra’s is
that the Dijkstra’s algorithm takes account to movement costs. For example connection A
is twice as fast as B.
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Figure 7.6: 16

First of all you have to initialize the relevant data
structure. We need a start node which is represented
in figure 7.6 as a red dot, this is also the current node
at the beginning. Moreover, we set the distance from
node C to C to 0 because it is our starting point.
During the runtime we will recieve the minimum
distances between Node C and every other Node, so
we can find the shortest way. For the beginning we
will set the distance from the rest of the nodes to
infinity because they are currently unknown.

Afterwards, we have to calculate the minimum distance from every neighbour. For
example the distance from C to B is calculated by adding 0, which is the minimum distance
of C, with 7, which the weight of the edge connecting our current node with B, to obtain a
minimum distance from C to B of 7. This process must be carried out for each additional
neighbour. After calculating every distance the current node has to be marked as visited.
Afterwards, pick another current node and repeat the whole process again and again until
there are no unvisited nodes left.

Figure 7.7: 17

Figure 7.7 shows the final result of the example. As
you can see every minimum distance is calculated
and every node is marked as visited, represented with
a green check mark. Now you are aware of the
shortest ways and you can easily find the most
efficient route from one point to another.

7.3.3 A* search algorithm

A* search algorithm (A*) is build on top of the Breadth First Search and Dijkstra algo-
rithm. Moreover, A* is only used for finding the shortest path to one specific point and
does not explore all possible ones. In contrast to Dijkstra’s Algorithm, A* accounts for the
actual distance from start and the estimated distance to goal. Consequently, A* does not
waste time on exploring directions which are not promising. This algorithm is wide spread
in the gaming industry to ensure a better gaming experience.

Listing 4: Example code of a A* search algorithm implemented in Python.

1 frontier = PriorityQueue()
2 frontier.put(start, 0)
3 came_from = {}
4 cost_so_far = {}
5 came_from[start] = None

16https://www.codingame.com/playgrounds/1608/shortest-paths-with-dijkstras-algorithm/dijkstras-
algorithm

17https://www.codingame.com/playgrounds/1608/shortest-paths-with-dijkstras-algorithm/dijkstras-
algorithm
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6 cost_so_far[start] = 0
7

8 while not frontier.empty():
9 current = frontier.get()

10

11 if current == goal:
12 break
13

14 for next in graph.neighbors(current):
15 new_cost = cost_so_far[current] + graph.cost(current, next)
16 if next not in cost_so_far or new_cost < cost_so_far[next]:
17 cost_so_far[next] = new_cost
18 priority = new_cost + heuristic(goal, next)
19 frontier.put(next, priority)
20 came_from[next] = current

7.3.4 Pathfinding in 3D environments

As our drone is flying in a 3-Dimensional environment, we need to make sure all our algo-
rithms are compatible with 3D. Because it is possible to move in an extra dimension much
more data can occur. Therefore, more information has to be processed by the algorithm
and more computing power is needed. Instead of using a 2D graph for abstraction, we
now need to use 3D graphs. Consequently x2 nodes are available, which does not make a
big difference for the algorithms, but it leads to higher memory use and a need for more
computing power.

7.3.5 Efficiency of pathfinding algorithms

One of the most important parts of an algorithm its efficiency, which can be expressed
using the Big-O notation. This notation defines the worst-case scenario and describes the
necessary execution time of an algorithm18.

Algorithm Worst-case performance
Breadth First Search O(|V| + |E|) = O(bd)
Dijkstra’s Algorithm O(|E| + |V| log |V|)
A* search algorithm O(E) = O(bd)

Table 7.1: Big-O notations of pathfinding algorithms. Where E is the number of edges and
V is the number of nodes.

7.4 Conclusion

Overall, we underestimated the effort for this part of the diploma thesis. Programming
and implementing a 3D pathfinding algorithm for a drone is not as easy as we anticipated.
Moreover, the GPS accuracy was not sufficient for our goals. With our current budget
and time-limits we were not able to reliably track the position of a moving drone on the
calculated map. In order to improve this thesis on the subject of path planning, more

18Rob, A beginner’s guide to Big O notation - Rob Bell .
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time and a substantial amount of effort would be needed. Instead, we decided to focus on
researching the foundation elements of aerial navigation, in order to provide our successors
with the knowledge they need to implement more complex matters, such as path planning.



Chapter 8

Graphical User Interface

Author: Matthias Grill

8.1 Introduction

Another requirement of this diploma thesis was the creation of a user interface (UI). The
front end was required to be a lightweight and intuitive way to control the drone in critical
situations. This ensured, that every soldier of the Austrian Armed Forced could control
the drone without the need for a long training. Reliability was another major requirement
set by the client. This was needed as errors in the control application could lead to loss of
equipment or in the worst case endangering a soldier.

8.2 Choice of platform

Because no platform for the UI was specified we had to choose one. Therefore, we decided
to develop a web application, because it’s system independent and can be easily modified
to run on a mobile device. Furthermore, we gathered much experience in web development
during the past years so it was not as difficult as a desktop application would have been.
In the end, we chose A single-page application (SPA).

It is a web application that as the name suggests only contains one HTML page. In
most cases this file is named "index.html". Depending on the users actions that page will
be dynamically updated to fulfill the users request. There are several advantages why
SPAs are used. They enhance the user experience because everything necessary to display
the user interface is pre-fetched. This leads to swift response times and imitates the user
experience of a desktop application.1

8.3 Vue.js

Vue is a javascript framework which is used for building single-page applications2. It was
used for this diploma thesis because it is simple to use and beginner friendly. In comparison
to other frameworks for example Angular or Ember it is lightweight. Additionally, Vue.js
provides a good documentation and user support. It is also an open source software licensed

1Angular University, Angular SPA.
2Vue, Introduction — Vue.js.

37



8. Graphical User Interface 38

under the MIT license (MIT)3 which allows to use it for private and commercial projects4.

8.4 Rosbridge

For the connection between the front end and the AARD back end we made use of Ros-
bridge5. It provides a JSON API for interacting with the Robot Operating System (ROS).
Therefore, we are able to communicate with the ROS master and we can easily subscribe
and publish to all topics. Subscribing to a topic is necessary for the GUI to get it’ informa-
tion from the network. The UI contains a whole section which is used just for monitoring
the drone. Each value is a subscription fom a mavros topic for example the altitude of the
drone or the current flight mode. Furthermore, Rosbridge allows us to rapidly add new UI
elements, as all the information necessary is already present or can be easily added with a
subscription to a topic.

Listing 5: Example of subscribing a topic with Rosbridge

1 var ros = new ROSLIB.Ros({
2 url: "ws://localhost:9090"
3 });
4

5 var altitudeListener = new ROSLIB.Topic({
6 ros: ros,
7 name: "/mavros/global_position/rel_alt",
8 messageType: "std_msgs/Float64"
9 });

10

11 altitudeListener.subscribe(function(message) {
12 self.data.altitude = message.data.toFixed(2);
13 });

Furthermore, the user is able to plan and adjust the mission in the UI. For example,
he can select the coordinates of the drone’s destination, set the drone’s height or control
its maximum speed. All this information needs to be sent to the back end system. This
has also been realized by using the rosbridge to communicate from the front end to the
mavros node. After the user chooses his preferred settings, he can submit his information
and trigger a drone start by clicking the "start"-button which will lead to all necessary
information being published to a suitable topic (in our case to the "/drone/start" topic).

Listing 6: Publishing all chosen settings to the "/drone/start" topic with Rosbridge

1 startTopic: new ROSLIB.Topic({
2 ros: new ROSLIB.Ros({
3 url: "ws://localhost:9090"
4 }),
5 name: "/drone/start",

3Opensource.org, The MIT License | Open Source Initiative.
4Vue, The official documentation site for Vue.js. Contribute to vuejs/vuejs.org development by creating

an account on GitHub.
5rosbridge_suite - ROS Wiki .
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6 messageType: "std_msgs/String"
7 });
8

9 startEvent() {
10 var message = {
11 goalAltitude: this.state.goalAltitude,
12 goalLatitude: this.state.lat,
13 goalLongitude: this.state.lng,
14 scanTime: this.state.scanTime,
15 droneVelocity: this.state.droneVelocity
16 };
17

18 var stringMessage = new ROSLIB.Message({
19 data: JSON.stringify(message)
20 });
21

22 this.startTopic.publish(stringMessage);
23 };

Code listing 6 shows the necessary steps to publish a message with rosbridge to a
specified topic. After the "startEvent" method is called a new message with the chosen
settings will be created. Before the new ROS message can be prepared it is necessary to
"stringify" the JSON object. "Stringify" is a method which converts the JSON object to a
JSON string so it is possible to exchange this message. This process is called serialization.
Subsequently, the previously created ROS message is ready to be published to the start-
topic. The backend system will now receive and process this information.

8.5 AARD GUI

Figure 8.1: Graphical user interface of the AARD application

Figure 8.1 shows the web application which was developed for this diploma thesis. The
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user interface (UI) is divided into four different sections to keep it intuitive and simple.
Each one has its own purpose:

1. Map: Shows a map which contains markers for the current location of the drone and
the selected destination

2. Mission: Settings for the mission which can configured by the user
3. Monitoring: Shows the current status of the drone consisting of:

• Battery
• Altitude
• Armed or Disarmed
• Flight mode
• Velocity

4. Control: Control panel to start or stop the AARD application
An advantage of this simple design is that it is easy to customize for the current needs.

8.6 Docker

We decided to run our AARD frontend software in two Docker6 containers. One container
contains a web-server which serves the AARD-GUI and the other one for running rosbridge.
One major reason why we use docker is the portability across machines. We can assume
that our software is running on every other PC which runs docker.

6Docker Inc., Docker .



Chapter 9

AARD Application

Author: Matthias Grill

9.1 Introduction

Goal of this diploma thesis is to develop the AARD Application for the Austrian Armed
Forces. To realize the software we decided to create automated missions, which are already
provided by ArduPilot1. There are a number of benefits associated with using the provided
missions. It is open source and a lot of functions are made available, which were already
tested. In addition, Ardupilot provides a lot of documentation on their website and offers
good support for their users.

9.2 Mission Planning

There are several ways how missions can be created and started. In most cases the Mission
Planner 9.1, a Windows-based Ground Control Station (GCS), is used. As Mission Planner
is a graphical user interface, developed for humans, we could not use the software to
automate our drone. Therefore, we decided to go to a deeper abstraction layer and used
the MAVLink2 protocol. It is used by the different GCSs to communicate between the PC
and the drone.

1ArduPilot Dev Team, Mission Commands — Mission Planner documentation.
2Dronecode Project, Inc., Introduction · MAVLink Developer Guide.
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Figure 9.1: The Ground Control Station Mission Planner3. In the top window the user
clicks on some points on the map to create waypoints for the drone. In the bottom all points
are listed with their corresponding GPS coordinates and altitude.

9.2.1 Waypoints

For us, waypoints are the most important feature of a mission. There is no limit on the
amount of waypoints that can be sent to the drone. For example. they can be used to
set the home position, initialize a takeoff or land at a specific point. That are just a few
examples, but there are much more which can be found in the MAVLink documentation4.
However, in our case the most used feature was to navigate to specified points.

Listing 7: Example code, creating a new waypoint and sending it to the flight controller.

1 self.waypoints.append(Waypoint(frame=3,
2 command=16, # Command type (16 is move to)
3 autocontinue=True,
4 is_current=True,
5 param1=self.scanTime, # Hold time in decimal seconds
6 param2=0.2, # Acceptance radius in meters

4common.xml · MAVLink Developer Guide.
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7 x_lat=self.goalLatitude, # Waypoint latitude
8 y_long=self.goalLongitude, # Waypoint longitude
9 z_alt=self.goalAltitude)) # Waypoint altitude

10

11 self.waypointPushService(start_index=0, waypoints=self.waypoints)

As you can see in code listing 7 there are many parameters which can be customized for
your own requirements. All the different command types and their associated parameters
can be found in the MAVLink documentation5.

9.2.2 Commands

The MAVLink protocol provides a large number of waypoint command types. Three dif-
ferent types of commands are defined:

• Navigation commands
• Condition commands
• DO commands

Navigation commands are used to control the drone. For example: takeoff, move to or
return to launch (RTL). These commands have the highest priority at runtime, therefore
every DO or condition command will be skipped till the navigation command is executed.
Conditional commands are used for waiting till a specific condition occurs. For example,
to reach a certain height or to fly a distance of five meters before the next command will
be performed. Lastly, the DO commands are used to execute one command immediately.
For instance to set the drone speed, drone mode or the home position6. A long list of all
commands and how to use them is available in the MAVLink documentation7.

9.3 Flight modes

Arducopter provides 20 different flight modes and ten of them are normally used. Every
mode accomplishes another purpose. Switching from one mode to another can be controlled
by using a radio, a ground control station or the MAVLink protocol. In the AARD Appli-
cation we are using a ROS service to switch trough the different modes. In the background,
this service uses the MAVLink protocol.

Listing 8: Example on how to create the setMode service in ROS.

1 self.modeService = rospy.ServiceProxy("mavros/set_mode", SetMode)

In code listing 8 we create a ROS service that calls mavros/set_mode. This interface
is provided to us by the mavros8 ROS package described later in this chapter.

We are using following flight modes in our software:
As you can see, some commands require a GPS location to be used, while others don’t.

This is a requirement set by the ArduCopter firmware, as these modes need GPS to function
properly. For example, RTL can not return to the starting location, if it does not know the

5common.xml · MAVLink Developer Guide.
6ArduPilot Dev Team, Mission Planning — Copter documentation.
7common.xml · MAVLink Developer Guide.
8Vladimir Ermakov, mavros - ROS Wiki .
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Flightmode Purpose GPS required
Alt Hold Holds altitude and self-levels the roll and pitch
Auto Executes pre-defined mission x
Guided Navigates to single points commanded by GCS x
RTL Returns above takeoff location, may aslo include landing x

Table 9.1: List of used flight modes9

current location of the drone. If a mode switch command is issued to the flight controller,
while GPS is not present, the controller will not switch and instead return a message, that
switching was unsuccessful.

9.4 AARD Mission

9.4.1 Initialization

It is required to execute an initialization in order to detect any errors, either from the user or
the drone, before takeoff. We do this to make sure that the drone or the person supervising
doesn’t get hurt in a malfunction of the program. Furthermore, it is necessary to make
calculations which will then be used later in the flight phase. In the AARD Application
following steps are carried out before launch:

1. Check and set arguments from the user input
2. Create services
3. Create subscribers
4. Create publishers
5. Set parameters for the drone’s behavior

After these steps were successfully executed we begin with the arming process.

9.4.2 Arming

Another important part of starting the mission is arming the drone. This can be done by
sending the correct message to the flight controller via the MAVLink protocol. During the
arming phase, the firmware running on the drone performs it’s pre-arm safety checks10. This
is necessary, to ensure all sensors are calibrated correctly and no anomalies are present in
the sensors. Barometer, compass, GPS or battery checks are a few examples of such safety
checks. If any of the pre-arm checks fail, the flight controller will prevent the vehicle from
arming. Furthermore, the safety button feature can be enabled, that requires the user to
press a button on the drone before arming. This makes sure, that the drone doesn’t take
off, if someone accidentally presses the wrong button.

9.4.3 Takeoff

Takeoff is the process where the drone leaves the ground and begins to fly. There are several
methods to launch a drone. For example the hand launch where the drone takes off from
your hand or the catapult launch where you catapult your drone to the sky to achieve a
greater level of acceleration11. However, we are using the commonly used method to start

10ArduPilot Dev Team, Pre-Arm Safety Check — Copter documentation.
11ArduPilot Dev Team, Automatic Takeoff — Plane documentation.
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from the ground and fly straight up. Nevertheless, we still have to do small tasks before
takeoff. Firstly, we change the flight mode to guided. Afterwards we have to wait for the
GPS signal because, as you can see in table 9.1, guided mode requires GPS. Finally, we
can arm our drone and start the launch.

Listing 9: Example code, demonstrating how the drone can be armed from a python pro-
gram.

1 self.SetMode(88, "GUIDED")
2 self.Arm(True)
3 self.TakeOff(altitude)

9.4.4 Mission start

After we reach the desired altitude, which the user entered previously, we automatically
start calculating the mission. The reason why we do not determine the waypoints before
launch is because the drone starts on a moving plattform, which has a velocity up to 30
kilometers per hour. For example if we would calculate the waypoints on the ground in
a duration of 0.1 seconds and the plattform has a velcoity of 30 kilometers per hour, we
would have an inaccuracy of up to 0.8 meters on the home position, which would lead to
some consequential errors. If we have calculated our waypoints successfully we switch the
flight mode to auto and the mission starts automatically.

9.4.5 Intermediate goal

First goal of the mission is to reach the first waypoint in the list, which is the intermediate
goal. Afterwards, the drone has to wait a specific time in seconds, which is set by the user
previously in the graphical user interface (GUI). After waiting, the next calculation will
be done. The interception position of the car and the drone must be calculated because
the UAV has to fly back to the moving plattform. After waiting following information is
available for us:

• Current position of the drone (Intermediate goal)
• Velocity of the drone
• Current position of the car (Car velocity multiplied by passed time)
• Velocity of the car

With this information and vector algebra we now can calculate the waypoint for the inter-
ception point of the car and the drone.

9.4.6 Calculating the interception point

One direction, constant velocity

Let’s consider our car being at point C with a local vector of ~c moving with a constant
speed vector ~vC . Furthermore, let’s consider out drone being at point D with a local
vector of ~d and a constant speed vector ~vD. As we do not know this speed vector ~vD, we
additionally define |~vD| as the current absolute speed of the drone. Our goal is to calculate
the interception point I, at which the vehicle and drone meet. This is done in equation 9.1
In order to calculate I, we additionally need to add t, defining the time needed for both
vehicles to travel to the interception point.

I = ~c+ t ∗ ~vC and I = ~d+ t ∗ ~vD (9.1)
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Figure 9.2: Shows an example of how the
environment might look like. We used this
sketch to come up with our formula to cal-
culate the interception point between the
car and the drone.

Variable Description Dimension
C car position 1× 2
D drone position 1× 2
~vC car velocity 1× 2
|~vC | absolute car velocity 1× 2
~vD drone velocity 1× 2
|~vD| absolute drone velocity 1× 2
I interception point 1× 1

Figure 9.3: All variables known to the
system.

At first glance, one might think, setting both equations equal, as shown in 9.2, could
return a viable result. This is not the case, as ~vD is unknown. Therefore, we decided on
following another approach to the problem.

~c+ t ∗ ~vC = ~d+ t ∗ ~vD (9.2)

Our second idea was calculating the time t needed to get from our current point to
the interception point I. Since our drone needs the time t to get from it’s starting point
D to the interception point I, we can divide this distance by our known speed |~vD| to get
t. Again, we can not use this equation, as we would need to know the absolute speed of
the drone. Instead, putting all know variables into one equation we get 9.3. This can be
used to calculate the time, but gives us the next problem, of t being at both sides of the
equation.

t =

∣∣∣~c+ ~vC ∗ t− ~d
∣∣∣

|~vD|
(9.3)

Before we try to solve this, we can simplify the formula by removing the fraction.
This gives us the equation defined in 9.4. Furthermore, we can add the helper variable ~o,
representing the offset betweeen ~c and ~d, as described in 9.5. Putting this all together, it
results in 9.6. Our next step is removing the length operator from the equation.

|~vD| ∗ t =
∣∣∣~c+ ~vC ∗ t− ~d

∣∣∣ (9.4)

~o := ~c− ~d (9.5)

|~vD| ∗ t = |~o+ ~vC ∗ t| (9.6)

By using the Pythagorean theorem, we know that the length of a vector is the length of
a vector is the square root of the sum of the squares of its components. This results in 9.7.
In the next step we remove the square root, giving us ~v2D∗t2 = (ox+vCx∗t)2+(oy+vCy∗t)2.
As a last step we multiply out the squares, resulting in 9.8,which is a quadratic equation
that can be solved by us.
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s ∗ t =
√
(~ox + ~vCx ∗ t)2 + (~oy + ~vCy ∗ t)2 (9.7)

t = t2 ∗ (v2Cx + v2Cy − |~vD|
2) + 2t ∗ (ox ∗ vCx + oy ∗ vCy) + o2x + o2y (9.8)

Although, we could solve this right now, we simplify this even further and replace all
the parts with known variables with helper variables defined in 9.9, 9.10 and 9.11.

h1 := v2Cx + v2Cy − |~vD|
2 (9.9)

h2 := ox ∗ vCx + oy ∗ vCy (9.10)

h3 := o2x + o2y (9.11)

We can now solve this quadratic equation putting it into the quadratic formula t1,2=
−2∗h2±

√
2∗h2

2−4∗h1∗h3

2∗h1
, which can be simplified, giving us two, one or none solutions to the

problem.

t1,2= −
h2
h1
±
√

(
h2
h1

)2 − h3
h1

(9.12)

Although we solved the equation, we still got to look at the edge cases. First, if the
expression under the square root is negative, the equation has no solution, meaning the car
and the drone will never intercept each other. The other edge case is present, if h1 is zero,
giving us the problem, that we can’t divide by zero. Lucky for us, this case is the simpler
case to solve. Looking back at t2 ∗ h1 + 2t ∗ h2 + h3 = 0 we can see, that if we set h1 to 0
the equation becomes 2t ∗h2+h3 = 0 meaning we can simply solve it, represented in 9.13.

t = − h3
2 ∗ h2

. (9.13)

After we now put down all the equations needed, we can easily implement this resulting
in the following code:

Listing 10: Code showing how we used our formulas to calculate the interception point
between the car, driving at a constant velocity, and the drone.

1 def calculateInterceptionPoint(startCar, velCar, startDrone, velDrone):
2 o = startCar - startDrone
3

4 h1 = np.inner(velCar, velCar) - velDrone ** 2
5 h2 = np.inner(o, velCar)
6 h3 = np.inner(o, o)
7

8 if h1 == 0.0:
9 t = -h3 / (2.0 * h2)

10 else:
11 discriminant = (h2 / h1) ** 2 - h3 / h1
12 if (discriminant < 0.0):
13 return np.array([0.0, 0.0])
14

15 t1 = (h2 / h1) + sqrt(discriminant)
16 t2 = (h2 / h1) - sqrt(discriminant)
17 tMin = min(t1, t2)
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18 tMax = max(t1, t2)
19 t = tMin if tMin < tMax and tMin > 0.0 else tMax
20

21 return startCar + t * velCar

One direction, varying velocity

Sadly, the last example, one direction, constant velocity, is only present in a simulated
environment. In reality, the environment changes constantly. Winds could affect the vehicle
or friction could slow it down. Furthermore, a car needs time to accelerate or decelerate.
Therefore, we decided to try another approach to intercept the vehicle. Of course, one
direction is still somewhat unrealistic, but we tried to break our problem down, solving
the simple ones first. In order to cope with all the changes, we mounted another flight
controller to the moving vehicle. This flight controller is connected to a Raspberry Pi 3
Model B+12 that connects to the flight controller via mavros13. Both, the drone and the
controller on the vehicle, are connected to the same WLAN, so they can communicate via
ros. We can then use this to get the current velocity and the gps position of the landing
platform and the drone. Having all this data, we can use the methods described in the last
example, but instead of the start position and velocity, we use the current position and
velocity of the car. We then periodically run this function to update the interception point.

Multiple directions, varying velocity

Lastly, the biggest challenge is presented, when a vehicle is moving in any direction with
changing velocity. This can be the case, when a car is moving around in a city, changing
lanes or turning around a corner. In order to land on such a moving object, algorithms
need to be in place, that predict the route. One way to simplify this, would be to define
the route the vehicle will take in advance. A tool could then use the speed limits, or just
any publicly available route planning API to calculate an interception point.

9.4.7 Land

The landing phase is the last phase of this diploma thesis. The goal is to land on a platform
mounted on a vehicle, while the vehicle is moving. This presents several challenges and their
possible solutions, which are documented in the next section:

Vehicle Detection

In order to land on the vehicle, we first need to detect the vehicle and then calculate
the relative position between the car and the drone. This is as trivial as it sounds, as we
have a constantly changing environment. This also includes multiple conditions in which
the drone still needs to be able to detect the vehicle. For example, this might include a
flight in the dark, during rain or during a snowstorm. As wanted to focus more on the
land process itself, we decided to detect the platform using visual information. This was
relatively easy to implement, as we only needed to put a ArUco tag onto the platform and
define the dimensions of this tag in the software. Such tag can be seen in 9.6. We then feed
the image from a camera, mounted on the drone to a software processing the information.

12RASPBERRY PI FOUNDATION, Raspberry Pi 3 Model B+.
13Vladimir Ermakov, mavros - ROS Wiki .
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Figure 9.4: Shows an aruco tag. Every tag has an ID encoded embedded as information.
Software can use this to identify the tag and calculate a relative position to the tag, if the
dimensions of the tag are predefined

We decided to use the ros fiducials package14. It allows a robot to determine its position
and orientation just by looking at fiducial tags.

Drone setup

In order to get a steady video feed from the drone’s camera, we decided to use a gimbal
mounted at the bottom of a drone facing downwards. We then connected the video camera
to a companion computer mounted on the drone. Additionally, we decided to put a Rasp-
berry Pi 3B+ onto the Quadcopter, powered by a power bank. This onboard computer is
connected to the camera on the gibmal with a usb cable, which then streams the live video
to the companion computer on the drone.

Vehicle setup

In order to intercept the vehicle, we first need to calculate an interception point. To do this
we required the gps position and velocity of the vehicle transporting the landing platform.
Therefore, we decided to place another flight controller on the landing target, communicat-
ing with the drone. This communication presented another challenge, as we needed enough
bandwith to transfer a continuous stream of position and velocity. Additionally, we needed
a medium that was able to transfer TCP/IP packets, because we did not have enough
time to implement communication via radio. In order to have a fast working prototype, we
chose a simple 802.11 Wireless Network with a battery powered router on the vehicle and
a WiFi dongle on the drone’s companion computer.

Speed matching

After the Drone is positioned at the interception point, it waits for the vehicle to pass the
bottom camera. When this occurs, the marker board placed onto the landing platform is

14Vaughan, fiducials - ROS Wiki .
15Erle Robotics, Erle-Copter .
16PX4 Dev Team, Pixhawk 1 · PX4 User Guide.
17Erle Robotics, Erle-Brain.
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Figure 9.5: Image of the Drone used for the real world tests. It is equipped with 4 rotors,
a flight controller placed in the middle of the frame and a gimbal mounted on the bottom
connected to a companion computer used for processing images on the drone. The drone
itself is a heavily modified Erle Copter15 with a Pixhawk16 flight controller.

detected and the aerial vehicles starts to match the target’s ground speed. This velocity
is provided via the flight controller placed onto the vehicle. The companion computer on
the drone then takes this velocity and sends a command to match it, to the drone’s flight
controller. This then results in the drone and the vehicle moving at roughly the same speed,
giving the drone the ability to go into the final landing phase.

Correcting the relative position and touching down

Before the quadcopter can touch down on the vehicle, it needs to place itself over the
moving object. This can only be done, after the vehicle and drone match their speed.
Afterwards, the bottom camera is used to track the marker board placed onto the vehicle,
providing the drone with a relative position between the landing platform and the drone.
The difference in the X and Y axis, between the two objects is then seen as the error, which
we try to minimize using a simple P controller. The output of the controller is then added
to the speed of the ground vehicle, in order to fly to the board. Finally, after the drone is
right above the landing platform, a signal is given to reduce the relative height between
the drone and the vehicle’s surface. This is done, till a certain threshold is reached, which
sends the landing command, finally touching down on the target.

9.5 Challenges and Problems

During development of this thesis project we encounter some problems and challenges we
did not expect at the beginning. We tried to solve all of them in the best possible way.

9.5.1 GPS

First of all, calculations with GPS coordinates caused some problems. If the user selects
the destination for the drone we receive these coordinates in the backend. For the first
approach where we had to calculate the distance between the current car position and
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Figure 9.6: Image of the flight controller placed on the landing platform. It is equipped
with a GPS module on top and a IMU to estimate the current velocity. The controller used
is a Erle Brain 317, which consists of a sensor shield mounted onto a raspberry pi. The whole
package is battery powered and publishes all data onto a ROS network. The GPS module is
placed onto handkerchiefs, in order to vibrations, affecting the compass integrated into the
same module.

the selected destination it was not easy to get calulcate this distance. Substracting the
destination coordinates and the current car position is not working here. So we had to
create our own method which calculates the distance between to given coordinates.

Listing 11: Method to caluclate distance between to given coordinates

1 def DistanceBetweenCoordinates(self, lat1, lon1, lat2, lon2):
2 degreesToRadians = (pi / 180.0)
3

4 dlong = (lon2 - lon1) * degreesToRadians
5 dlat = (lat2 - lat1) * degreesToRadians
6

7 tempA = pow(sin(dlat / 2.0), 2.0) + cos(lat1 * degreesToRadians) *
8 cos(lat2 * degreesToRadians) * pow(sin(dlong / 2.0), 2.0)
9 tempC = 2.0 * atan2(sqrt(tempA), sqrt(1.0 - tempA))

10 tempD = 6367.0 * tempC # approximate radius of earth in km
11 return 1000.0 * tempD

Moreover, we also need a formula to add meters to given coordinates. As before, it is
also not possible to simply add a distance to latitude and longitude because you have to
convert both in the same unit.

Listing 12: Method for adding meter to GPS coordinates
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1 def OffsetGps(self, inputLatitude, inputLongitude, meterX, meterY):
2 dLatitude = meterX / 6378137.0 # Radius of earth in meter
3 dLongitude = meterY / (6378137.0 * cos(pi * inputLatitude /180.0))
4

5 newLatitude = inputLatitude + (dLatitude * (180.0 / pi))
6 newLongitude = inputLongitude + (dLongitude * (180.0 / pi))
7 return newLatitude, newLongitude

Overall, we found a solution for every problem we had with GPS cooridnates calcula-
tions. Nevertheless, these calculations are not 100% accurate but sufficient for us.

9.5.2 Waypoints

Creating and using waypoints for our misssion also leads to some problems. Debugging
missions is really time consuming because it is only possible with trial and error. The first
problem with waypoints came up when we realized that our drone skips the first point in
the waypoint array, which is uploaded to the drone. We tried to find a solution to this
problem, but we gave up after wasting multiple hours. Instead, we chose to just ignore the
problem and send a placeholder waypoint in the first place. Even in the documentation is
no available solution for this bug.
Secondly, we wanted to launch the drone’s takeoff procedure by using a waypoint. This
has led us to the next problem with waypoints, because it just does not work when you
create a waypoint with the takeoff command. It will be ignored and the drone stays on
the ground. Like in the previous problem, there is no solution for this problem in the
documenation. Therefore, we have to takeoff in the guided mode and afterwards start the
mission by switching to the auto flight mode.
The last problem we are having with waypoints is the callback function. If the drone
reaches a new point it should automatically send a message to this function. This message
contains information about the reached waypoint. However, this function does not work as
expected. Instead of triggering when a waypoint is reached, it called the callback randomly
with often incorrect sequence numbers.

Listing 13: Waypoint reached callback function

1 def WaypointsCb(self, data):
2 rospy.loginfo("Waypoint reached: " + str(data.current_seq))
3 self.currWp = data.current_seq

As you can see in code listing 13, every time the drone reaches a new waypoint it will be
logged and the current waypoint variable will be set. Sometimes it works but sometimes it
loggs random values and another time it loggs the same waypoint 20 times consecutively.
Following from this reasons, there is not enough reliance on this function. Therfore, we
have to check the position of the drone on our own if we want to know where the drone is
and if it already reached a way point or not.

9.5.3 Speed matching

Before the drone can land on the moving vehicle, it first needs to match its speed. At first,
we decided to use the relative velocity between the vehicle and the drone, to accelerate the
drone accordingly. We know the relative velocity, as we can get the position of the tag, if it
is spotted by the camera. By integrating this list of relative positions and timestamps, we
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can easily calculate the velocity. After we did all those calculations, we looked at sending
the corresponding commands to the drone via the MAVLink protocol. Luckly for us, so we
thought at first, there is a message called SET_POSITION_TARGET_LOCAL_NED18

defined in the common message definitions19 for ArduCopter. Among other things, the
message includes 3 fields for acceleration in the X, Y, and Z axis. Easy done, just implement
the message and off we go, flying a drone. Sadly, this was not the case, as nothing happened,
when we sent the correct message to the drone running the ArduCopter flight stack. The
message does exist, as said in the documentation, but hidden on the second page of google,
we found out, that the 3 fields we wanted to use are currently not implemented in software.
For us, this resulted in a big amount of more work, setting back our planning. Instead of
working with the relative velocity, we now had to put sensors onto the vehicle, to get its
absolute velocity.

9.5.4 Camera control

Another challenge we didn’t expect occurred, when we tried to use a gimbal mounted on,
and controlled by the drone. Our idea was to use a camera to detect the tag underneath
the moving quadcopter. For this, we mounted a camera onto a computer-controlled gimbal,
which would then be aimed straight down. Sadly, as a default mode, our Tarot gimbal20 is
aimed straight ahead. Therefore, we needed to use the PWM camera control functionality
of the PX4 firmware to control the two servos on the gimbal. Easier said than done, as the
flight controller is typically set up to control the camera via two RC channels received on
the radio. A quick look at the PX4 documentation revealed, that this behavior could be
changed by some parameters. Sadly, similar to other problems we had with the firmware,
the documentation and reality vary drastically. Setting the parameters resulted in no visible
changes of the gimbal orientation, not even after a controller restart and after updating to
the newest flight controller firmware. This is a major problem of both, the PX4 firmware
and the ArduCopter flight stack, as the documentation is often not kept up to date. Luckly
for us, after hours of tinkering, we could solve this problem by overwriting the default
mixer behavior of the Pixhawk. Mixing is used to translate force commands to actuator
commands. To do this, we just had to create the correct file, as shown in 14, and upload
it to the SD-Card. The controller then reads this file and changes the pitch accordingly.

Listing 14: Mixer file used to point a gimbal downwards.

1 # roll
2 M: 1
3 O: 10000 10000 0 -10000 10000
4 S: 2 0 10000 10000 0 -10000 10000
5

6 # pitch
7 M: 1
8 O: 10000 10000 0 -10000 10000
9 S: 2 1 10000 10000 0 -10000 10000

10

11 # yaw

18https://mavlink.io/en/messages/common.html#SET_POSITION_TARGET_LOCAL_NED
19common.xml · MAVLink Developer Guide.
20WENZHOU TAROT AVIATION TECHNOLOGY CO.,LTD, TAROT T4-3D 3-AXIS BRUSHLESS

GIMBAL FOR GOPRO TL3D01 .
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12 M: 1
13 O: 10000 10000 0 -10000 10000
14 S: 2 2 10000 10000 0 -10000 10000

9.5.5 Simulation versus Reality

For test purposes we created a simulation environment for the drone and the car. The
major reason why we decided to develop our software in a simulation is because it speeds
up the project process. We are able to develop at home, on the way to school or even
when the weather is bad. Another reason for a simulation is the functionality, if it works
in the simulation it also should work in reality when we fly outdoor. The functionality of
the simulation is the biggest problem. We spent much time in simulating the drone but for
inexplicable reasons it does not work as good outdoor as in the simulation.

9.6 Testing

Testing a software is one major part of developing an application. When we developed
the AARD Application we spent a lot of hours just in testing and debugging. Testing a
program on a drone is only possible with trial and error which consumes much time of
the developer, especially if we need to test in a realistic environment. Before every testing
session outside we had to to the following steps, consuming a lot of time and energy:

1. Check if the batteries are charged
2. Go outside with following items:

(a) Notebooks
(b) Drone + batteries
(c) Radio transmitter and receiver

3. Connect notebook to drone
4. Calibrate all sensors:

(a) Compass
(b) Accelerometer

5. Start testing
Just the preparations for testing outside took about 15 to 30 minutes. Moreover, when the
battery level got too low during testing we had to stop and wait for multiple hours till
the batteries were fully charged. Another big problem of testing the drone outside was the
weather and the wind. If the environmental conditions do not allow it, for examples when it
snows, rains or the wind is too strong, we could not test and had to wait till the conditions
changed. This can lead to major time delays, as we could not calculate the weather into
our time management.

All these problems were a incentive for us to rather focus on getting a reliable simu-
lation working, instead of testing outside. We decided to test everything in Gazebo which
is a software for simulation in ROS. It includes a 3D model of our drone and an ArUco
marker, which represents the moving platform. The effort required to get this simulation
working was another part we underestimated. In the end, we spent about two weeks to
get from a clean system install to a fully set up computer running the firmware and the
simulation required to develop without any flight controller hardware.
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Figure 9.7: Shows the basic structure of our simulation.

However, simulating a drone also creates disadvantages and difficulties, which one might
not expect. First of all, simulated environments do not represent all the factors present in
reality. Hence, it can not be expected that the drone works in reality if it works in the
simulation. Of course simulations provide a good approximation of the real conditions,
therefore often only small changes are needed to get the program working with real hard-
ware.
Moreover, trying to simulate an realistic environment takes a lot of memory and compu-
tational effort. This provides another problem for us, as we typically work on notebooks,
without large amounts of processing power or memory capacity. We could not easily solve
this problem, as we typically developed while we were in school, making it impossible for
us to use a big tower pc. One possible solution, would be using a cloud-based technology to
have all the power in some datacenter and stream the visual outputs to a small workstation
via the internet.



Chapter 10

Conclusion

The Autonomous Aerial Reconnaissance Drone (AARD) project is a first step towards a
fully autonomous aerial drone landing on a constantly moving vehicle. Multiple prototypes
have been constructed and programmed and a vast amount of work has been done to help
the next generation of students in understanding the ArduCopter and PX4 flight stacks.
Furthermore, a git repository with a fully functioning development environment has been
created, which enables other students to instantly start working on other projects.

10.1 Development

A big amount of time working on this thesis was spent on creating a functioning develop-
ment environment, including operating system independence, easy to use communication
and a simulation environment. This was needed, as no similar work has been done before
at this educational institution, giving the authors no base to work on.

10.1.1 Docker

One technology playing a key role in this thesis is the docker container engine1, which
provides an easy way to set up all the necessary software needed to run this project on any
computer. If used together with Docker Compose2, a tool for running multiple containers
at once, every service needed to run the application can be started with only one command.
Furthermore, all containers have been set up to provide a graphical user interface, if the
correct NVIDIA drivers are installed. Another key advantage of using this bundle of soft-
ware is the easy dependency management. To update all the software, only small changes
need to be made to the Dockerfiles, giving the user a hassle-free experience in updating
the dependencies.

1Docker Inc., Docker .
2Docker Inc., Docker .
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10.1.2 Robot Operating System

The second technology playing a key role is the Robot Operating System (ROS). Although
it is called "operating system", ROS should rather be classified as a software stack, which
provides a unified way for multiple services to communicate between each other. These
ROS nodes can exchange information, as long as they share the same network, making
it easy to transfer data between our ground station and drone. Furthermore, the open
source community is providing a massive amount of free-to-use software compatible with
ros, giving developers the ability to rapidly create prototypes.

10.1.3 Arducopter versus Px4

The third and last component required to run the software created in this thesis is a flight
controller firmware. This can be ArduCopter, PX4 or any other MAVLink compatible
software. The firmware runs on the flight controller placed on the drone, controlling the
motion of the vehicle. The two major stacks tested as part of this thesis were ArduCopter
and PX4.
ArduCopter is an open source project created by volunteers in their free time. One big
advantage of this stack is its compatibility with a variety of hardware controllers, making
it one of the most used systems. This results in a large amount of developers working on
different parts of the software at once, providing many features and customizing options
for the user. Although this might seem like an advantage at first, the documentation on
the project is often left untouched, even if the software changes.
The PX4 flight control software is another way to control the drone. Like ArduCopter,
PX4 is open-source and developed by a large community. The system was first created
at the ETH Zürich aimed to be used in computer vision projects. Differentiating it from
the other stacks, PX4 only supports a rather small amount of controllers, all based on the
Pixhawk series. This rather small list of controllers makes it easy for the user to set up the
firmware, without running into any problems. Another difference noticed by the authors,
was the good and extensive documentation, making it easy to fix any problems that might
occur.
Both stacks are compatible with the QGroundControl software, which enables the user
to configure the drone before flight. Additionally, autonomous missions can be created,
executed and saved to a file, which helped the authors in debugging their own software.

10.1.4 Simulation

In order to rapidly develop and test software, a virtual simulation environment has been
set up by the authors. Both flight Stacks, ArduCopter and PX4, include simulators based
on the gazebo engine, with the flight controller either running directly on the hardware
(Hardware in the Loop) or on the host computer (Software in the Loop). Both of these
environments include a integration into ROS, making it easy to spawn new drones. Fur-
thermore, the source code is provided as open source, giving the authors the ability to
change the flight characteristics of the quadcopters. Although these simulators are a good
way to develop, they do not represent a real test. Nevertheless, these environments provide
a good way to test the software beforehand.
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10.2 AARD Application

Next to the written part of this thesis, as software prototype was developed, enabling
the user to create and execute autonomous missions. In order to maintain some form of
structure, everything was split into two parts.

10.2.1 AARD Front-End

The front-end is responsible for displaying the user-friendly interface. It can be accessed
via any common, up-to-date web browser. In this interface, a goal location can be specified,
which the drone needs to explode. Additionally, the current location of the car and the aerial
vehicle are displayed. After all the required input is done, the mission will be executed and
additional information, such as battery status, will be shown. To enable communication
between the drone and the web-server rosbridge, a javascript API for ROS, was utilized,
making it easy to subscribe or publish on ROS topics.

10.2.2 AARD Back-End

In order to translate the user input into commands for the drone, a back-end was created.
It gathers all necessary information from the drone and the front-end and then creates the
control commands for the drone. Additionally, it analyzes the image data generated by the
bottom facing camera and then calculates the velocities needed to successfully land on the
vehicle. All this information is then taken and processed via a python software running
in a docker container. Afterwards, the commands are encoded into a MAVLink message,
using mavros and sent to the flight controller, either via radio communication or by a direct
cable connection.

Together, the front-end and the back-end provide an easy way for future students to get
started with developing an autonomous drone. Multiple ways to control the drone, such as
autonomous missions and velocity setpoints are included as examples and an easy integra-
tion into an intuitive ui was created. All in all, the software is far from complete, but it
presents a good proof-of-concept or prototype. With its easy expandability trough ROS, a
ready to use development environment and the simulation everything has been set up for
future teams to get started on development.

10.3 Outlook

One big problem encountered within this thesis was the tracking of a moving vehicle from
the drone. In future works, the camera could be replaced with specialized sensors mounted
on the vehicle and the drone, in order to calculate the relative position from the vehicle
to the drone. Another part that could be improved is the route between the start, the
goal and back. Currently, the drone flies on a straight line, without any obstacle detection.
This could be improved, by mounting a depth camera onto drone, looking forward and
creating a map of the environment. If something in the path is detected, the drone should
autonomously avoid the obstacle. Similar behavior could be integrated into the landing
phase, where the drone needs to place itself above the drone. If the user for some reason
decides to make a sharp 90 degree turn in an urban environment, the drone could crash into
obstacles. This could be avoided, if the route of the vehicle would be entered beforehand.
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