
Remote Monitoring and Controlling of Robotic
Systems with MissionControl

Daniel Swoboda, Raphael Weinfurter, Markus Pinter, Florian Ungersböck, Christoph Käferle, Daniel Honies
Department for Computer Science

Federal Technical Secondary College in Wiener Neustadt
Austria

i12032@student.htlwrn.ac.at

Abstract— This publication introduces MissionControl, an
application suite created to simplify the workflow of getting
remote data readout of robotic systems during their development
on multiple, independent clients. This environment has been
developed as a project in the 12th grade for HTL Wiener
Neustadt. MissionControl and the underlaying MIDaC-Protocol
(Modular Information Display and Control Protocol) were
developed with competitive, educational and hobbyist robotics in
mind. It’s not intended for industrial applications other than
prototyping. This publication focuses on the capabilities of
MissionControl and MIDaC while an overview of the technical
aspects is given. It also introduces use-cases and situations in
which MissionControl can help developers.

Keywords— remote monitoring; remote controlling;
educational robotics; networking

I. INTRODUCTION
The remote monitoring of a robotics system is the key for

fast error detection and correction during the development
phase of a robot. While some systems like the KIPR Wallaby
already offer a kind of remote data readout by default this
hardly fulfills the necessities of multiple device and multiple
developer workflows. Since there might be a variety of robotic
systems in use as well as many different client devices such as
phones and tablets there is the need for a flexible, standardized
system that can run on a variety of robotic controllers and can
be accessed with a variety of different client devices.

Another need of developers during the development phase
is the ability to remotely control a bot in order to test
configurations or problem solving approaches before
implementing them.

One solution to these problems is MissionControl, a free
and open source application suite designed to transmit data
from a robotics controller in order to show it to a user on a
client device. It makes use of the MIDaC Protocol, which was
created for MissionControl, and is meant to be multi-platform
and easy to port.

II. IMPLEMENTATION
MissionControl was designed to allow users to customize it

as much as possible while keeping it simple to use. All Clients
as well as the server are open-source and can be adapted to the
specific users needs. The components were also designed to be
easily interchangeable which was achieved by standardizing
the communication protocol and locating most of the
application logic to the server.

A. MIDaC Protocol
The MIDaC Protocol is an application layer (DoD model &

ISO/OSI model) protocol [1, 2]. It was designed to allow easy
data exchange between the server and the clients. The protocol
is also used for inter-process communication via Unix Domain
Sockets which is necessary in the current implementation of
the server.

Clients communicate with the MissionControl server over
an existing network communication. MIDaC protocol was
designed with communication over a standard (Wireless-)
Local Area Network via Ethernet or Wi-Fi in mind but since it
is an application layer protocol it can be used with most other
intercommunication technologies that provide a method for
establishing a continuous connection. However the current
implementation only works for Wi-Fi and Ethernet based
networks.

The protocol makes use of the JSON data format for every
part of the communication. JSON was selected for its focus on
serialization, vast support across multiple languages and
platforms, its readability, its better performance in network
operations and it’s lower overhead compared to XML [3]. 
Although existing protocols could have been used, the design
of a custom protocol made it possible to tailor it to the needs of
educational and hobbyist robotics like Botball. This approach
also removed possible overhead of already existing protocols.
[4] 
 
A connection is established via a three-way-handshake in
which information is exchanged for the server to know which
data it can send and for the client to know which UI elements
must be generated and what data to expect. A schematic
representation of the handshake can be seen in “Fig. 1”. 
 

!
Fig 1. A schematic representation of the MIDaC protocol handshake.

mailto:i12032@student.htlwrn.ac.at?subject=

B. Server
The server was implemented in the Python 2.7 and C

languages to allow for cross platform usage. Python was used
since it is supported on almost all Linux devices and higher-
performance robotics controllers, like the ones used in Botball,
and makes it more convenient to realize socket communication
and multiple-client management. A platform specific program
that creates an abstraction of the controller to unify the way the
server accesses the actuators and sensors, which is called the
MissionControl Robotics System Abstraction Layer (RSAL),
was created. It was implemented using C since most controller
APIs like the Link and Wallaby Controller API, ROS and
Robotics Library are native to the C/C++ languages [5-8] and
allows to use the server, which was implemented in Python, on
any platform without making changes to it.

The interprocess communication between both parts is done
via Unix Domain Sockets which are a standard method for
interprocess-communication in Unix-like environments [9].
The server as well as the actual prompted data and the
controlling routines are configurable to allow for a maximum
of customization. This is done via the MissionControl
Controller Markup Language (MC2ML, see section D) and the
config file.

When one or more clients are connected the server
periodically checks for new control input from the clients and
requests new data from the RSAL, which is collected by
calling the functions specified in the used MC2ML file. These
values are put into a JSON format, which structure is defined
within the MIDaC protocol. After receiving the data it is sent to
the connected clients.When control inputs have been sent to the
server, the messages are sent to the RSAL which performs the
actions which are also specified in the MC2ML file. A
schematic presentation of the data flow is depicted in “Fig. 2”.

The MIDaC protocol specifically is used in the server for
handshaking, providing a standard for data formatting and for
communication between the server and the client as well as
both parts of the server.
 

!
Fig 2. A schematic representation of the data flow in a MissionControl

setup, the used mediums of transportation (left of dashed lines) and
the application layer protocols (right of dashed lines).

C. Clients
Native clients for Android and iOS were developed to gain

maximum performance and battery-efficiency. In addition to
the mobile apps a WebSocket based Web-Client was developed

which gives access to the controller data from desktop PCs or
not natively supported Smartphones or Tablets. By supporting
the most common devices it is easy to integrate MissionControl
in existing environments without the need of adaption to the
workflow. This approach also allowed to show-case the broad
support of the technologies on multiple platforms that are the
basis of MissionControl.

The clients were implemented using technologies, design
(as it can be seen in “Fig. 3” and “Fig. 4”) and programming
languages which are native to each platform. They make up the
presentation layer of the MissionControl suite and only handle
the data display and the transmission of control signals to the
server, the control logic is implemented only on the server side
in the RSAL.

All data between clients and servers is transmitted via TCP
sockets. Both, the iOS and Android client, use socket libraries
in which the receive function is blocking until data is
incoming. Because of that socket operations run in a specific
thread. The JavaScript WebSocket API however makes use of
events, so a function has to be specified which is called
whenever data is incoming. Actuator controlling commands are
sent when the UI elements assigned to them are used.

The UI update rates are independent of the server update
rate and were selected based on the performance of the client
devices. Hence, all values are received, but not all are shown if
the server update rate is higher than the UI update rate. In the
case of a server update rate less than the UI update rate, all
values are shown for a longer period of time. During this
reaction time there will be a loss of data, but with no
consequence for the monitoring process.

 

!
Fig 3. A screenshot of the iOS version of MissionControl in the sensor

readout view.

!

Fig 4. A screenshot of the Android version of MissionControl in the
actuator control view.

D. MissionControl Controller Markup Language (MC2ML)
To make it easier to implement support for additional

controllers and to customize what data is shown on the clients
as well as what actuators can be controlled by the user a
markup language called MissionControl Controller Markup
Language was developed. MC2ML is a XML based language
in which the libraries that need to be included, the functions to
access sensor data and the functions to control the actuators on
the robot are defined. The language therefore also incorporates
parts in which plain C source code is written. Providing a
standardized markup language makes it easier to develop
controller-specific MissionControl implementations without
any knowledge of internal libraries used by the server. Hence
none of these libraries have to be exposed and errors that can
be made while adapting to a new controller or to a specific set-
up are minimized. Through it, it was possible to simplify the
process of bundling and deploying controller-specific support
files.

A parser that is bundled with the server was written to
create and compile the platform specific RSAL out of the
MC2ML file.

III. INTEGRATION IN A BOTBALL ENVIRONMENT
Botball, being an excellent educational robotics program, is

great for learning about mechanical design and programming
of robotics systems. To enhance the teaching effects of Botball
a prototyping tool with remote control and data readout
capabilities like MissionControl can help by providing greater
insight into what the bot actually detects while it’s running a
program. MissionControl is compatible with both the KIPR
Link and KIPR Wallaby, the two newest robotics controllers

that were developed for Botball. The design of MissionControl
made it feasible to implement it on both controllers where it
runs stable with more than 25 updates per second.

Once MissionControl is installed on the controller, it can be
launched as a service in autostart mode. Since MissionControl
hardly needs any resources if no client is connected (see
“Server Performance Analysis”), it doesn’t affect controller
performance. This makes MissionControl available on the
developers demand without the need of being activated before
using. Since most Botball students use the comfortable Wi-Fi
compilation feature, the Wi-Fi must be set up on the controller
where, no additional set-up is required.

If a robot is finished, a MC2ML file can be created that is
adapted to the final robot’s design. Within the file the sensor
ports used on the bot can be defined and named with the other
ones being ignored whereupon additional data sources, i.e. blob
tracking counts, can be added. Control groups can be defined in
which i.e. collecting a game table item can be an action
performed by the click of a button.
A. Comparison of different workflows

One common way to monitor sensor data, used by many
Botball students, is to use the output on the built-in display of
the controller. This approach makes it hard to monitor the robot
outside the developer’s visual field since users have to be able
to watch the display at any time. Another common way is to
launch the program via a remote Secure-Shell (SSH). While
making remote monitoring possible, no real time graphs can be
created and the output is dependent on the running program.
The third way of monitoring sensor data is the new Web UI of
the KIPR Wallaby. This makes it possible to see the display
output from any connected browser. However it completely
lacks any kind of control and the data displayed is dependent
on the running program as with SSH and the standard display
output. The different methods are compared to MissionControl
and graded in “Table I”.

TABLE I COMPARISON OF DIFFERENT TASKS AND ATTRIBUTES OF THE DATA
READOUT AND CONTROL METHODS INTRODUCED ABOVE. “+” IS

OPTIMAL, “~” IS ACCEPTABLE, “-” IS SUBOPTIMAL.

Task
Methods for remote controlling and monitoring

Display
Output SSH

Wallaby Web
Output

Mission
Control

Set up per
use None SSH

Connection

Controller:
None
Client:
Connection
via Web App

Controller:
None
Client:
Connection
via App or
Web App

+ - ~ ~

Simultaneo
us
connected
devices
with output

None 1 1 >1

- ~ ~ +

IV. SERVER PERFORMANCE ANALYSIS
With most robotics controllers in educational robotics being

sophisticated Linux based computers, it is possible to make use
of many of the technologies that can be used on a regular
computer. However processing power of most controllers is
way below modern PCs with single-core processors and clock
speeds below 1GHz on the KIPR Link and KIPR Wallaby (the
main targets for MissionControl). Because of that a system like
MissionControl has to be written with performance in mind in
order to not worsen the performance of other programs running
on it. The runtime usage of resources of the MissionControl
server was tested by letting a robot drive straight while running
the server at an update rate of 20 updates per second and
periodically connecting and disconnecting up to two clients at
the same time. First one client was connected for 20 seconds
and then disconnected, after that 2 clients, with 10 seconds
pause, where connected simultaneously. The average of the
CPU usage in idle and under load where calculated. To monitor
CPU and memory usage during the tests the command line task
manager top was used.

A. Performance on the KIPR Wallaby
The KIPR Wallaby is the newest and current controller

used in the Botball competitions, it features built-in Wi-Fi and
can also be connected to a PC with USB using Ethernet via
USB. It runs a custom Linux OS on an ARMv7 processor and
natively supports Python 2.7, so MissionControl can run out of
the box.  

 

!
Fig 5. CPU usage of the MissionControl server on the KIPR Wallaby. Solid,

vertical, blue lines mark a disconnecting client; dashed, vertical, blue
lines mark a connecting client.

As shown in “Fig. 5” the average CPU usage of the server
is 21.35% when clients are connected. An additionally
connected client adds about 1% of CPU usage. If no client is
connected average CPU usage drops to 0% in idle. Neither
robot speed nor execution time were affected by
MissionControl, although more than 20% CPU usage is
considered high.

B. Performance on the KIPR Link
The KIPR Link is the previous generation Botball

controller which was used from 2013-2015. It also features
built-in Wi-Fi and runs on Ångström-Linux which is a Linux
distribution created for scalability and embedded devices [5,
10]. Its CPU is an ARMv5 processor and it also natively
supports Python 2.7, although some parts of the Python
standard lib are missing, which have to be added manually [5]. 
 

!
Fig 6. CPU usage of the MissionControl server on the KIPR Link. Solid,

vertical, blue lines mark a disconnecting client; dashed, vertical, blue
lines mark a connecting client.

When a client is connected CPU usage averages at 27.8%
as it is seen in “Fig. 6”. As on the KIPR Wallaby CPU usage
increases by about 1% for any additional client connected, idle
performance drops to 0% usage and the performance of other
running programs doesn’t seem to be affected by
MissionControl, although CPU usage is even higher.

Distance

Normal
Viewing
distance
(~50cm)

Same
network

Same
network

Same
network

- + + +

Custom
Control
abilities

Hardware
button and
virtual
buttons

Parsing
console text
input
(depends on
running
program)

None

Fully
customizabl
e UI-
elements.
Always
available

~ ~ - +

Client
platforms None

Multi
platform
(SSH
application
required)

Multi
platform
(Web
browser
required)

Multi
platform
(Web
browser or
native Apps
required)

- + + +

Controller
platforms

Controllers
with built-
in display
(e.g.
Wallaby,
Link)

Multi
platform
(Wallaby,
Link, most
other
platforms)

Wallaby Multi
platform

~ + - +

Task
Methods for remote controlling and monitoring

Display
Output SSH

Wallaby Web
Output

Mission
Control

CONCLUSIONS
Having an open protocol and a set of tools for remote

monitoring of robotic systems mostly enhance the workflow of
developing robots. It gives the developers greater insight in
what their robots are actually measuring in almost real time.
But for many developers it’s also important to have a modular
system since the used robotics controller might change over
time. MIDaC and MissionControl are an approach to deliver an
open application stack while still being modular enough to be
used on a multitude of clients. It makes use of standard and
well-proven technologies like TCP/IP sockets and JSON which
are integrated in most modern programming languages.

However, one of its major problems is its incapability to
run on low-end controllers that are not running full Unix
systems with networking support. This excludes most Arduino
and Arduino-like controllers. Another problem is the need of
preexisting infrastructure like networks and the need to install
the server on the controllers, which requires knowledge of the
Unix shell.

In the future MissionControl has to be tested in a great
variety of scenarios while support for more controllers has to
be added by the project team as well as third-parties. Future co-
operations between teachers and academics should improve
MissionControl and help with integrating it more in
educational events like Botball.

APPENDIX
MissionControl is an open-source project developed by

Team items for HTL Wiener Neustadt and F-WuTS. Source
code and documentation is available on GitHub and on the
MissionControl website.

ACKNOWLEDGMENT
The authors would like to thank Dr. Michael Stifter for his

support during the work on this publication; DI Harald

Haberstroh for his support and sharing his knowledge during
the development of MissionControl and MIDaC and DI Harald
Breidler for his support as the project advisor.

REFERENCES
[1] V. G. Cerf, E. Cain "The DoD Internet Architecture Model",  

h t t p : / / c i t e s e e r x . i s t . p s u . e d u / v i e w d o c / d o w n l o a d ?
doi=10.1.1.88.7505&rep=rep1&type=pdf, Publication, 1983, accessed
2016-02-20

[2] C. Facchi, "Methodik zur formalen Spezifikation des ISO/OSI
Schichtenmodells“, Chapter 1,  
https://www4.in.tum.de/publ/papers/Diss_Facchi.pdf, publication, 1995,
accessed 2016-02-20

[3] N. Nurseitov, M. Paulson, R. Reynolds, C. Izurieta, "Comparison of
JSON and XML Data Interchange Formats: A Case Study“,  
http://www.cs.montana.edu/izurieta/pubs/caine2009.pdf, publication,
2009, accessed, 2016-02-20

[4] N. Yocom, "The Definitive Guide to Linux Network Programming",
Chapter 7,  
ISBN 1590593227, textbook, 2004

[5] B. McDorman, J. Southerland, "A Look Inside the KIPR Link",  
h t t p : / / f i l e s . k i p r . o r g / g c e r / 2 0 1 3 / p r o c e e d i n g s /
McDorman_A_Look_Inside_the_KIPR_Link.pdf, publication, 2013,
accessed 2016-02-20

[6] S. Zeltner, D. P. Miller, "Kiss Your Old KISS Goodbye",  
h t t p : / / w w w . g c e r . n e t / s c o r i n g / p a p e r s /
KISS_Miller_KissYourOldKISSGoodbye.pdf, publication, 2015,
accessed 2016-02-20

[7] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, A Ng, "ROS: an open-source Robot Operating System",  
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-
ros.pdf, publication, 2009, accessed 2016-02-20

[8] http://www.roboticslibrary.org, website, accessed 2016-02-20
[9] J. Wolf, "Linux-UNIX-Programmierung", 2nd Edition, Chapter 11,  

ISBN 3-89842-749-8, textbook, 2006
[10] http://www.angstrom-distribution.org, website, accessed 2016-03-16

https://www.github.com/team-items/
http://missioncontrol.robo4you.at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.7505&rep=rep1&type=pdf
https://www4.in.tum.de/publ/papers/Diss_Facchi.pdf
http://www.cs.montana.edu/izurieta/pubs/caine2009.pdf
http://files.kipr.org/gcer/2013/proceedings/McDorman_A_Look_Inside_the_KIPR_Link.pdf
http://www.gcer.net/scoring/papers/KISS_Miller_KissYourOldKISSGoodbye.pdf
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf
http://www.roboticslibrary.org
http://www.angstrom-distribution.org

