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Kurzfassung

Die vorliegende Diplomarbeit beschäftigt sich sowohl mit dem humanoiden Roboter In-
Moov als auch seiner Simulation und der Möglichkeit ihm Dame beizubringen.
Dafür wurden mehrere Teilbereiche erarbeitet. Dazu gehören Computer Vision, AI, Roboter
Steuerung, 3D-Modellierung und Simulationen.
Die erste Aufgabe war die Erkennung von Spielfeld und Spielzügen. Durch Anwendung
diverser Filtermethoden und Erkennungsalgorithmen von OpenCV konnten diese erkannt
und ihre Eigenschaften festgestellt werden.
Um einen externen Transport der erkannten Spielzüge zur Engine zu vermeiden wurde der
CV Code direkt in der Engine implementiert.
Dort wird der erkannte Zug repliziert und der Nächste berechnet. Da der Controller der
Simulation bzw. des echten Roboters nicht in der Engine implementierbar war, müssen die
berechneten Züge weitergeleitet werden. Dieser Transport erfolgt durch Sockets basierend
auf dem multiprocessing Modul von Python, da sowohl die API des echten Inmoov als
auch die Simulation des Inmoov in Python implementiert sind.
Nach Empfang der Nachricht wird die Art des Zuges, die betroffenen Steine und sowohl
deren alte als auch neue Positionen ausgelesen.

Der Controller wandelt diese Befehle dann in Koordinaten um. Mithilfe von Inverser
Kinematik steuert er den Finger beziehungsweise die Hand des Roboters zu dem betroffenen
Feld, hebt den Stein auf und bewegt ihn zu dem Ziel. Dies kann ein anderes Spielfeld oder
eine Fläche außerhalb des Spielfelds sein um z.B. das entfernen eines Steins darzustellen.
Desweiteren wurden auch Maßnahmen ergriffen um die Realität der Simulation zu erhöhen.
Dazu gehören nicht nur Verbesserungen der Render Qualität sondern auch Einstellung
der Limitationen des Roboters und Nutzen eines IK Lösers welcher physikalische Limits,
zumindest teilweise, in Betracht zieht.
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Abstract

The following thesis is about teaching the humanoid robot InMoov, or a simulation thereof,
to play checkers.
To achieve this several parts were developed. This includes Computer Vision, AI, robot
controlling, 3D modelling and simulations.
Firstly the game board and turns had to be detected. For this various filters and algorithms
from OpenCV were used.
To simplify the transport of information between the engine and OpenCV the CV code
was implemented directly in the engine. This allowed the transport of e.g. moves without
needing external transmission like sockets.
In the engine the recognised move is replicated and the next move is calculated. Since
the controller of the simulation and of the real robot could not be implemented in the
engine the calculated moves had to be transported externally via sockets. This transport
was achieved by using sockets based on the multiprocessing module from python.
After receiving the messages the type of move, the affected stones and start - and end
position are extracted. The controller converts these commands to coordinates and using
Inverse Kinematics he is able to move the finger or hand of the robot to the specified field,
grab the stone and move it to target coordinate.
This target coordinate can either be another game field or a point outside of the game
board to simulate a stone being removed from the game.
Furthermore several measures were adopted to increase the realism of the simulation. These
include not only measures to improve the render quality, but also setting limits for the
simulation as well as the real robot and using IK Solver that, at least in some part, take
physical limits into account.
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Chapter 1

Introduction

1.1 Motivation and Background

With significant advances in computer vision and artificial intelligence in recent years, more
and more consumer grade household robots have been released. Humanoid concepts were
used in industrial applications for centuries, but now the technology is on a level to recreate
and resemble almost all parts of a human body. Simultaneously the emergence of low budget
3D Printers made it possible for artists and engineers alike to design and build low-cost
open source humanoid robots. This combination of developments led to the creation of the
robot used in this diploma thesis, the Inmoov-Robot. An open-source, community-driven
humanoid robot by French designer Gael Langevin. It is now used around the globe thanks
to the ability to print it anywhere using a 3D-printer.

1.2 Goal

This diploma thesis will take a look at one application showcasing future interactions with
humanoid robots in our day to day live.

At the end of the project a robot, specifically the open source humanoid Inmoov Robot,
or a simulation thereof is capable of playing a game of English Checkers against a human
player. It is intended that minor nontypical behaviour is needed to play against the robot.
Nontypical behaviour means i.e. that it is necessary to interact with the computer control-
ling the robot, for example telling him when the game starts or that a move was made. All
of the interaction after starting the program should be done by visually interacting with
the machine. The program is able to detect the game start and the game end and will react
accordingly. To make this possible the following parts have to be achieved:

• Detecting following things using Computer Vision:

– Checkerboard
– Positions of the opponents game pieces
– Start and end of a game
– Moves done by the human player

• Linking the visual recognition to a checkers solving program
• Calculating the movement of the robot’s body
• Carrying out the calculated move

The game recognition program passes the detected move to an open source checkers
GUI and engine. Moves done by the human player will be passed to the open source

1
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engine and then displayed by the GUI. The GUI will not be necessary to play against
the robot but for testing purposes should be able to display the next move of the
robot and the detected moves of the human player. A new move will be calculated
by the engine and then be passed to the robot.

After receiving the next move from the engine the robot will calculate the necessary
movement. Not only the movement to the fields has to be consistent, but also the
grabbing mechanisms.

1.3 Digital Image Processing and Computer Vision (Honies)

1.3.1 Definition

Digital image processing refers to when an input image is processed so that an output
image is generated. It can also refer to processes where attributes (e.g. edges, contours)
are extracted from the input image.[1, pp. 1-3]

Computer Vision overlaps in the case of recognising objects but goes way further than
that. It tries to analyse all the detected objects so the computer can understand the whole
scene.[1, pp. 2,3]

1.3.2 History

Digital image processing began as soon as modern computers were developed. First appli-
cations date back to 1964 when the Jet Propulsion Laboratory of NASA was using early
techniques to improve pictures of the moon. The late 1960s and early 1970s saw the tech-
niques adopted by the medical industry to be used for computerised tomography. Since
then digital image processing was applied to almost all technical endeavours. Examples
include electron microscopy, industry monitoring and automatic processing of fingerprints.
[1, pp. 3-7]

The beginning of computer vision is often told based on a story that happened in 1966
at MIT. Marvin Minsky asked a few undergraduate students to link a camera to a computer
and getting it to describe what it saw, for a summer project. Over 50 years of research later
we are still not at that point. While at that time image processing already existed, the field
of computer vision was working to recover the 3D structure of a 2D image, which could
then be used to fully understand the scene. First edge detectors and 3D modeling algo-
rithms were developed in the 1970s. The 1980s have seen research in all fields paired with
more advanced mathematical techniques. Edge and contour detectors were improved. In
the late 1990s and early 2000s, many of the nowadays heavily used computational photog-
raphy algorithms were being developed. Examples include HDR pictures through exposure
bracketing and image stitching for panorama photography. Global optimization problems
and feature-based techniques for object recognition are appearing since 2000. In recent
years most problems have been combined with advanced machine learning algorithms, a
prime example being driverless cars with all major brands working on them at the time of
this thesis.[2, pp. 10-19]

As digital image processing and computer vision often overlap the thesis will repeatedly
refer to computer vision as a generic term for both computer vision and digital image
processing.



1. Introduction 3

1.3.3 Current State

The current state of computer vision is highly advanced and driven by the development of
new autonomous systems, mainly in the automotive sector. A few examples of industrial
and consumer-level applications include the following.

Applications

• Text recognition
Text recognition is used to read handwritten postal codes and number plates in radar
systems. Also, scanners use it to make scanned documents searchable.

• Face detection
Face detection can be found in many different systems including cameras and surveil-
lance systems. Autofocusing cameras can focus faster and more accurate after de-
tecting a face. The united states and other countries apply it to identify persons at
airports.

• Vision-based biometrics
Mobile phones and computers have fingerprint readers to control access while more
sophisticated security systems are also applying iris detection to identify persons.

• Motion Tracking
By attaching reference points to humans and filming complex movements, those can
then be applied artificial objects, resulting in more natural and human-like behaviour.

• Driverless cars
Autonomous driving systems are developed by all brands. While at the time of this
thesis they are not yet fully developed and safe, statistics show that in known envi-
ronments, they are already performing safer than human drivers. Computer vision
is combined with several other fields of computer science including location tracking
and machine learning.

1.4 Humanoid Robots (Weller)

1.4.1 General

The definition of a humanoid robot can easily be explained by first examining the name
itself. Humanoid is a combination of the English word “human” and “-oid”, which is adapted
from Ancient Greek and means resembling, and a robot is a machine that performs, often
complex, tasks. Concluding from these definitions a humanoid robot is a human appearing
machine used for performing tasks.[3][4][5]

This subcategory of machines can be further differentiated for example by the way
they are controlled i.e. if it is an autonomous or a teleoperated (telepresence) robot, by
their purpose i.e. enjoyment or service and by their legal concept i.e. open source or closed
source. [6, p. 34] [7, p. 1]

A fully autonomous robot acts and reacts on its own, and does not need supervision[7,
pp. 16]. Current examples include, but are not limited to, Boston Dynamics Atlas[6, p. 45]
and Hondas ASIMO[6, pp. 40-41].

Telepresence robots are controlled by a human located at the same or a different site.
[7] An example for a telepresence humanoid robot is the robonaut, which can be controlled
by a human on earth, through the help of virtual reality, while it is on a mission in space[7,
p. 6] [8].



1. Introduction 4

1.4.2 History

The idea of humanoid servants can be traced back to the ancient Egypt, Greece and China
(e.g. golems or the golden maids of Iliad)[7, p. 3].

During this time frame, this concept went through several stages.
From fiction, like the golden maids, statues behaving like human maids [7, p. 3], to basic

humanoid machines like "‘Leonardo’s robot"’[9], to today’s humanoid robots like Inmoov
and ASIMO. While at the beginning machines only had certain gestures and couldn’t react
to their surrounding, modern humanoid robots can, thanks to modern motors and sensors,
move in complex ways and interact with the real world [10, p. 280].

1.4.3 Current state

This change throughout the last decades now allows them to not be restricted to enter-
tainment and factories anymore, but instead, they are on their way to the military and the
service sector[7, p. 27].Current examples for this development are the therapy of children
with autism using humanoids and service or personal assistant robots such as PEARL[7,
p. 36][11, p. 229].

1.5 Outline

Starting with the Methodology Section the thesis gives an overview of the hardware and
software used in the implementation. Furthermore, alternatives and the decision process
is presented. Following the Methodology, it is described how the project was implemented
in the fields of computer vision, robot control, simulation and game logic. Experiments
showcasing and testing the implementations are demonstrated for each subsystem. Finally,
a conclusion will give a summary of the work done and a preview of possible future imple-
mentations, their challenges and applications.



Chapter 2

Methodology

2.1 Python (Weller)

2.1.1 General

Python is a high-level, general purpose, object-oriented programming language. It was
created by Guido van Rossum as a successor to ABC. The main reason for the development
was the lack of exception handling and the difficulty to modify or extend it.[12, p. 3]
Another big part in its history was the 2.0 update when it introduced, amongst other
things, functionalities like list comprehensions and a garbage collector.
These were not the biggest changes with the 2.0 version. After the release Python went
from being developed by one person (Guido van Rossum) to a community-driven, open
source project. [12, pp. 2-5]
Eight years later update 3.0 was released with some minor update such as removing the
long-datatype and views instead of lists. The big controversy about the switch from 2.7 to
3.0 was the lack of backward compatibility. This meant that most programs written in 2.7
had to be rewritten to support 3.0. That change was necessary because many redundant
modules had to be removed or changed to fit the new motto that there should be, preferably,
only one obvious way to do something.[12, pp. 2-5][13][14]

2.1.2 Why Python?

Python was chosen because most alternatives were either not supported by the libraries or
the APIs used in this thesis. These libraries include e.g. OpenCV, iTaSC and the API is
the Blender API. [15] [16]
Another advantage of Python is that both parts of the thesis used it. This simplified the
connection and communication between the robot, computer vision and checkers engine.

2.2 Computer Vision (Honies)

2.2.1 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and
machine learning software library launched in 1999 by Intel Corporation employee Gary
Bradsky. Having received lots of support from big companies, it is currently under de-
velopment by Itseez (part of Intel) and Arraiy. The library is written in C and C++
and interfaces are available for many common languages like Python and Java. Designed
for computational efficiency it provides over 5000 functions and implements more than 500
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computer vision algorithms. Used for this project was version 3.1.0 while the current stable
version is 3.2.0.[17]

2.2.2 Alternatives

Several other computer vision libraries are available and were considered for the project.
Amongst them were SimpleCV, BoofCV and libccv. The decision to use OpenCV was
made because all of them either lacked important features, their development was stopped
or they were not written in python and no python interface was provided. Also, OpenCV
is the best documented computer vision library available.

2.2.3 Camera

In the project’s scope, it was decided that the program should work with a standard low-
cost USB webcam. The team, therefore, used an old Logitech C310 HD Webcam with a
resolution of 1280 by 720 pixels. It has been used for all computer vision tests and all
images in this thesis describing those have been taken with it.

2.3 Checkers (Honies)

2.3.1 General

Draughts or Checkers is a group of board games popular around the globe with the English
version of Checkers being the most popular one. 2007 it was announced that English
Checkers is solved, with the result that a perfect play by both sides leads to a draw. It was
the most complex game solved at that time [18].

2.3.2 Why Checkers?

When searching for a game for the robot to play, Chess and Checkers were considered. It
was decided to go for Checkers for two reasons:

• Game Pieces
Checkers game pieces are universal. All have the same shape and height and the
opponent’s pieces only differ in color. Thus it is easier for the robot to grab them
and to not crash into other pieces. For the same reason, they can also be detected
easier with a single webcam.

• Complexity
Checkers can be explained easier as there is only one possible movement and therefore
even people or kids who are not familiar with checkers can try to play against the
robot on fairs. On the engine side, less computation power is needed as checkers
moves are calculated with simpler logic than chess moves.

2.3.3 Board and Game Pieces

Board

The board used for the project is an 8 by 8 black and white checkerboard printed out
on paper. Edge length for the squares is 35mm resulting in an overall board dimension of
280mm by 280mm. It was necessary to keep it small so the robot can reach every field.
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Pieces

The pieces used for testing are black and white, have a diameter of 23mm and a height of
5mm.

2.3.4 How does it work?

English draughts is a game for 2 persons where every player starts with 12 pieces. It is
played on an 8 by 8 checkerboard where the pieces are placed on the dark squares of the
three rows closest to a player. Usually, the player with the dark pieces starts the game.
Different movement and capturing rules apply based on the piece being either a man or
a king. While man can only move diagonally forward onto free squares a king can also
move diagonally backwards. A man will be promoted to a king when it reaches the row
furthest away from its player. If a man meets an opponent’s piece, diagonally, behind which
a square is free, the player has to "jump" over the piece and therefore capture it, meaning
that the opponent’s piece has to be removed from the board. A player then needs to capture
the opponent’s pieces as long as the same piece has an opportunity to jump over a piece.
While men can only capture forward, kings can also capture backwards. A player wins if
the opponent has no pieces left to play with.

2.3.5 Why English Checkers

The decision on which version of checkers to use encompassed several factors. The English
version was selected because of the following reasons:

• This version uses an 8x8 checkerboard and 24 pieces, which means that less computing
power is needed compared to the international version with 40 pieces.

• English Checkers neither allows flying kings nor men being able to capture backwards,
both resulting in less computing power needed to calculate moves for the robot.

• The 8x8 board is used for many games and thus other games can be adapted more
easily.

2.4 Checkers engine and GUI (Honies)

The scope of the project included connecting the computer vision code to an already
available checkers engine. Therefore several criteria were determined and available engines
were researched.

2.4.1 Criteria for selecting the Engine

When selecting the engine these criteria had to be obeyed:

• Graphical Interface
The engine has a graphical interface for easier testing ability and to be able to monitor
what the robot recognizes. Writing a graphical interface would exceed the scope of
the project.

• Programming Language
As all the robot code and all the computer vision code is written in python, the
engine code is written in python or has a python wrapper.

• Game Strength
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Game Strength is an important factor when selecting the engine. The criterium for
this project is that the strength can be selected and an advanced human player should
be able to win at least against the easiest stage.

• Complexity
As the engine and GUI need to be integrated with the mechanical and computer
vision implementation it is of importance that they are well written and easy to
comprehend.

• License
As the code being written for the thesis is being released open source it is important
that the Checkers code is also released open source and that all license rules are being
followed.

2.4.2 Chinook

Chinook is a checkers program developed by scientists at the university of Alberta. Its
development started in 1989 with the goal to defeat the human World Checkers Champion.
It did so in 1994 against Marion Tinsley, who is considered the best checkers player of all
time. In 2007 Chinooks developers announced that checkers has been solved and that a
perfect game results in a draw. It took several computers running almost two decades to
solve the game. Only end game databases containing perfect information for 8 or fewer
pieces are available storing 443,748,401,247 different positions. Those are very big though
with a size of 5.6 GB. The code isn’t available publicly.[18]

2.4.3 Cake

Cake is an engine developed by Martin Fiertz and it’s one of the strongest engines available.
It’s the successor of Cake Manchester which will be mentioned further down. He also
developed CheckerBoard, a windows application specifically designed to work with different
engines. Like most other engines it is written in C++.[19]

2.4.4 KingsRow

KingsRow is another checkers engine, written by Ed Gilbert. It is, as Cake is, one of
the strongest engines. What sets it apart from Cake is that there are versions for several
checkers variants available, for example, Italian Checkers and international draughts. As
for performance, it’s the only one being able to benefit from multi-core systems.[20]

2.4.5 GUI Checkers

GUI Checkers is an entire checkers engine and graphical user interface written and released
in March 2006. It is entirely written in C++ and was originally designed for Windows XP.
As tested by the author its game strength isn’t the best. Tests show that it is beaten
by more advanced engines, namely KingsRow and Cake Manchester. It does beat the
SimpleCheckers engine almost every time, though. Its play strength can be set and it gets
a lot weaker when set to Beginner. Against casual humans, it usually wins or draws.[21]

2.4.6 Samuel

Samuel is an open source project written by John Cheetham in 2009. It is available under
the GNU 3 License on GitHub. Samuel uses the engine from the GUI Checkers program
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mentioned above, but entirely re-implements the GUI for Linux. The graphical user in-
terface is written in python and uses the pyGTK and GTK+ framework. It also uses the
same graphics as GUI Checkers. The code base is relatively small and easy to follow.[22]

Figure 2.1: Samuel on macOS

2.4.7 Decision

Based on the above-described criteria to select the engine, the samuel engine was chosen to
be used for the project. Especially it’s low complex and well-structured python codebase
and the graphical user interface did heavily contribute to the decision towards it.

2.4.8 Others

Several other open source projects were considered to be used for the project. Those include
Raven Checkers and Checkers-Overlord.
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2.5 Blender (Weller)

2.5.1 General

Blender is an open source project aiming to provide a free computer graphics software
alternative. It supports amongst other things modelling, animating, compositing and game
development. The software is published under the GNU General Public License, allowing
everybody to read and modify the source code as long as the changed version is, again,
under the GNU General Public License.[23][24]

2.5.2 History

Development first started in 1995 by NeoGeo as an in-house animation tool, but after
three years its development was shifted to NaN. At the beginning, Blender was designed
to only be free for interactive content and for everything else a commercial version was
available.[24]
This business plan lasted until 2002 when the support by investors was stopped and a
new course for the company was needed. A successful crowdfunding campaign allowed the
release of the new official open source version under the GNU General Public License. [24]
To showcase the possibility of Blender and improve the development several Open Movies
e.g. Elephants Dream and Big Buck Bunny. These movies not only made it possible to
market Blender but also to find possible improvements or necessary features.[24]

2.5.3 Development

For the development of Blender C, C++ and Python were used. E.g. scripts inside Blender
for user interface and object manipulation etc. are written in Python. These scripts can
be changed by the user and it’s also possible to add individual scripts capable of not only
affecting the scene but also changing the UI and features.[25, p. 2]

Because the source code is available for everyone to download it’s is also possible to
circumvent the Python development of feature and to directly change the behaviour of
Blender from the ground up.[15]

2.5.4 Alternatives

The biggest competitor of Blender is Maya. Originally planned as a combination of Alias
Sketch! and The Advanced Visualizer by Wavefront Technologies, after both were bought
by Silicon Graphics in 1995, it later was developed to be a next generation animation tool.
[26, p. 315]

It is written in C++, C#, Python and Mayas own, on Sophia based, scripting language
“MEL” (Maya Embedded Language). [26, p. 317]

Maya is used for television, film, game development, architecture and art, and has been
honoured several times by the Academy of Motion Picture Arts and Sciences with the
Award for Technical Achievement for scientific and technical achievement.[26, p. 315]

An exemplary company and project, which, partly, used Maya is Industrial Light &
Magic for Star Wars [26, p. 315]

A major drawback of Maya is the licensing. As a student it is possible to access a free
trial, but this trial does not include the possibility for commercial use.When using Maya
for commercial projects a subscription based license needs to be acquired, costing about
238,- € / month.[27]
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2.6 Inverse Kinematics (Weller)

2.6.1 General

Kinematics can be divided into two categories: Forward- and Inverse Kinematics. These
concepts can be applied to any robot and the selection depends on the available input and
the wanted output.[28]
For further explanations some basic terms and concepts that apply to both have to be
described beforehand. In Kinematics a certain segment of a body is called the end effector.
This end effector is the last piece of a chain of revolute or prismatic joints.[28]
Each segment and joint is described using the DH Convention, which is named after its
creators Jacques Dennavit and Richard S. Hartenberg. This convention simplifies the de-
scription by reducing the number of needed variables. Instead of the normally needed six
variables of a rotation matrix, only four link variables are needed:

• αi Link twist of link i. The angle from zi-1 to zi measured about xi.
• ai Link length of link i. Describes the distance from zi-1 to zi along xi.
• di Link offset of link i ( prismatic variable ). The distance from xi-1 to xi measured

along zi-1.
• θi Joint angle of joint i ( revolute variable ). The angle from xi-1 to xi measured about

zi-1.

[28]
For this notation to work certain rules have to be followed:

• zi-1 is the axis of actuation (revolution or translation) of joint i
• xi is set so it is perpendicular to and intersects zi-1
• Derive yi from xi and zi

[28]

(a) Chain with joints A, B and C

(b) DH notation of a chain [28]

Figure 2.2: IK

Using these parameters and rules the Forward- and Inverse-Kinematics can be calcu-
lated. They both deal with the same concepts, namely the joints and angles of a robots
segments, but are used in different situations. Forward is used when the angles between
the segments are known but the position of the end effector is unknown.[28]
The Inverse Kinematics, commonly referred to as IK, is used when the opposite situation
applies. This means the joint angles are unknown. Instead, the end effector position is
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given as input and through various calculation, explained later, the joint angles are calcu-
lated and can be applied to the robot segments thus moving the end effector to a desired
position.[28]
Forward Kinematics will not be further discussed in this thesis, instead, the focus will lay
on IK because it was used for the real - and simulated robot to calculate the movement
and rotations necessary to move the hand (end effector) to a certain point in space i.e. a
game piece or field.
Commonly in IK the construct, i.e. the robot’s arm, is called a chain of links. This chain
consists of multiple bodies called links ( each represented by the letter A ). These links are
connected in a way that allows A n to be translated or rotated in respect to A n - 1.[28]
Using the aforementioned notation the DH matrix can be created. This matrix is used e.g.
in the Jacobian transpose, a method to calculate the necessary movement. [28]
Other algorithms are e.g. the DLS, SDLS and FABRIK[29, pp. 244 - 245]
While DLS and SDLS are based on the same concepts but try to improve them by de-
creasing jitter and random movement, FABRIK tries to solve the problem from a different
perspective, namely adapting algorithms from rope simulations. [29, p. 244]

2.7 Robot (Weller)

2.7.1 General

As discussed before a humanoid robot is a human-like robot. This commonly also includes
e.g. assembly line robots, that do not resemble humans, but have a design inspired by -
or based on a feature of the human body. In an assembly robots case, this could be the
human arm or elbow which is then adapted to a mechanical design.
This approach of humanoid robotic design has certain benefits but can also lead to prob-
lems. One of the biggest problems of humanoids is walking, because it encompasses precise
measurement of the current movement and complex algorithms to calculate the future nec-
essary movement to balance out or continue walking while also needing accurate motors
with enough power and speed to react fast enough to possible loss of balance that can be
encountered when for example walking on uneven ground. [6, p. 63]
These complex algorithms do not only include the calculation of the movement and bal-
ancing but can also include computer vision to assess the environment and approximations
for the best possible way to overcome obstacles. [7, p. 54]
For this thesis, a robot design that only has basic features such as an elbow wasn’t enough,
since the HRI with a human like robot should be as high as possible while simultaneously
trying to circumvent the uncanny valley. In preparation for the thesis and the decision of
the appropriate robot several humanoid robots were researched and evaluated, and some
of them, each representing a certain group of humanoid robots, will be compared in the
following paragraphs.

2.7.2 ASIMO

ASIMO is a high-end, consumer humanoid robot. Developed by Honda in 2011 he is one of
the most advanced consumer robots available. Not only is he able to move through crowded
places, climb and descend stairs, but he is also able to run with up to 7 km/h. [30] [31] He
uses a camera, multiple gyroscope-, acceleration- and 6 axis force-sensors to compute his
walk and possible obstacles.[30]
The big disadvantage of ASIMO is that it is not for sale and only for some people available
for leasing. According to some sources e.g. Forbes, the leasing price is US $ 150.000,- per
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(a) Asimo Robot

(b) InMoov

Figure 2.3: Humanoid robots

month. [32]

2.7.3 Poppy

On the other spectrum of consumer humanoid robots is Poppy. It’s open source and has 3D
printable parts. Poppy can either be, partly, printed at home (€ 6.459) or bought complete
online (€ 9.039). He is 83 cm big, has 25 actuators and uses a camera for input.[33] [34]
Compared to the Inmoov he lacks a humanoid face and can not move as many body parts,
e.g. his hands are rigid and thus hinder him from playing draughts.

2.7.4 Atlas

A big part of humanoid robots designs come from research facilities e.g. Boston Dynamics.
Representing this group is Atlas, which was built and designed by Boston Dynamics for
DARPA in 2013. He weighs 150 kg, is about 1.88 m big and has two vision systems.[35]
A laser rangefinder (LIDAR) and stereo cameras, with which he took part in the DARPA
challenge this includes, amongst other things, driving a vehicle, opening a door, using a
tool to break through a concrete panel or operating valves. [36, pp. 5-6]
Atlas is neither open source nor 3D printable, can not be bought and hardly resembles a
human, which made him unsuitable for this thesis.

2.7.5 Inmoov

Another section of humanoid robots are open source, community driven robots. Illustrating
this area is Inmoov. He is mostly designed by French artist Gael Langevin. The project
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started as the first open source prosthetic hand and continued to grow into the first open
source 3D printed human-sized robot. [37]
Inmoov is open source and 3D printable, resembles the upper body of a human and can
move most of his body parts.

2.7.6 Conclusion

A table of the before listed facts to compare the robots:

Table 2.1: Robots

Name Price Advantage Disadvantage

ASIMO US $ 150.000 per month

Advanced sensors
Advanced motors
Object recognition
Object avoidance

Price

Poppy built at home: € 6.459
bought online: € 9.039

Average sensors
Average motors

Price
Rigid body parts

Atlas Unknown Advanced sensors
Advanced motors Not available for consumers

Inmoov Maker Austria’s built
est. at 1500 € - 2000 €

Open Source
3D printable
Community

Inaccurate movement
Undocumented libraries

2.8 Virtualisation (Weller)

2.8.1 General

A virtualisation or simulation is a, often computer generated, representation of a pro-
cess.[38]
In this thesis virtualisation stands for the computer generated representation of the hu-
manoid robot. This model needs to be as accurate and realistic as possible, to proof that
this concept can also be recreated with a real robot in a nonsimulated environment e.g.
against human players.
Accuracy and realism do not only mean that the render, a computer generated graphic,
should look realistic but also encompasses restrictions on movement i.e. rotation and trans-
lation of joints, and physical rules i.e. physical constraints. These conditions are necessary
to allow an accurate assessment of the applicability of the algorithms and concepts on a
real world robot and to further allow a detailed run down of possible limits and boundaries
of the software. These boundaries can e.g. be that certain movements can not be done by
the robot.
A list of the examined boundaries and possible solutions can be found in the implementa-
tion chapter.
For the virtualisation of the Inmoov two options were available. The VirtualInmoov and
creating a new model with realistic proportions and restrictions. Because of the time that
would be necessary to create a life-like model the VirtualInmoov was chosen, but slightly
adapted.
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2.8.2 VirtualInmoov

The VirtualInmoov (aka VinMoov) was designed by a user on the MRL forum named GroG
and is available as a Blender model. It not only has the appearance of the robot but also
the servos and an attached armature. [39]

He can be moved through MRL, the Blender API and the Blender user interface.
All of these have certain benefits and drawbacks. MRL has already implemented the com-
munication with the robot controlling simulated servos but does not run reliably and also
lacks a proper documentation for the implemented functions.
The Blender API, on the other hand, is capable of accessing the robot controlling arma-
ture and everything in the scene, including the game board, pieces and everything of the
Blender user interface.
Problems start arising when trying to be as realistic as possible since the armature on its
own does not have the limits of the body or servos and they have to be added.
From the beginning, the Blender user interface was out of question, since the robot can
be only controlled via mouse and keyboard when using this method, which would add
unnecessary complexity to the program.

In the end, the Blender API was chosen because it had the best integration. It did not need
any additional startup or configuration since it is included in and starts with Blender.[40]
The limits were added via joint rotation restrictions at the IK level, which will be further
discussed in the implementation chapter in the section “Simulated Robot”.



Chapter 3

Computer Vision Algorithms
(Honies)

Various computer vision algorithms are used for the project. To understand how the robot
detects the different states of the game, which will be described in the next chapter, it is
necessary to describe which algorithms were used or looked into. This chapter will compare
them to alternatives and show examples of processed images to point out their effectiveness.

3.1 Grayscale Conversion

As the human’s pieces and the board are either black or white, no other color is of any
significance. Also, most OpenCV algorithms used for the thesis will only accept grayscale
or binary images and those which accept coloured ones will also run faster as there is only
one value to process instead of 3. Every Image taken is therefore converted into a grayscale
image. It can be done by passing the original image and the format it should be converted
to, to a simple OpenCV function:

1 grayscaleImg = cv2.cvtColor(rbgImg,cv2.COLOR_BGR2GRAY)

3.2 Downscaling

Downscaling is another very popular method to decrease the computation power needed
by a computer vision application. As there aren’t a lot of applications which need pixel
perfect precision, downscaling the image before passing it to other more performance heavy
algorithms is a way to let a program run more performant.

3.3 Digital Image Smoothing

Digital Image is needed to filter out noise. Noise is problematic as the webcam isn’t of
great quality and lightning isn’t always the same, so the webcam automatically sets a
high ISO which results in lots of noise. It is done by the convolution of 2 arrays. One 2D
array representing the grayscale values of an image and another 2D array representing a
kernel with weighted values. Convolution works by shifting the kernel over every pixel of
the image, multiplying every intensity value of the neighbouring pixels with the overlaid
value of the kernel and then building the sum of all those values. The sum then needs to
be divided by the sum of all weights in the kernel to get the new value of the pixel.[41]

16
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3.3.1 Mean Filter

A mean filter is the most basic version of an image filter. Its kernel is evenly distributed,
resulting in every pixel having the average value of it’s neighbours pixels in the x, y size
of the kernel. A kernel for a mean filter with an x and y of 5 is shown in 3.1.

K =
1

25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 (3.1)

Code

1 meanFilteredImage = cv2.blur(gray,(5,5))

3.3.2 Gaussian Blur Filter

The gaussian blur filter is using a discrete approximation of a gaussian 2-D distribution
for the kernel. A kernel for a standard deviation of 1 and a mean of 0 is shown in 3.2.

K =
1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 (3.2)

Advantages

As the distribution of the kernel is weighted towards the pixel which is being calculated,
noise will be filtered out as good as with the mean filter but edges will stay sharper. Figure
3.1 shows both filters with a kernel size of 11x11.

Code

1 gaussianFilteredImage = cv2.GaussianBlur(gray, (5, 5), 0)

3.4 Thresholding

Thresholding is used to separate the objects in an image from the background. For the
images taken in this project, only grayscale images are passed to a thresholding function
and only binary images are expected to be returned. Binary images are images whose
pixels have only two possible intensity values. They are usually displayed in black and
white, white being the object, numerically 0 for black and 1 or 255 for white. This simple
form of thresholding works by comparing every pixel’s intensity value to a threshold value
and if it is higher it will get a value of 1 or else 0. Dozens of different methods exist to
determine that threshold value and 2 which were tested for the project will be described.[41]
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(a) Mean Filter (b) Gaussian Filter

Figure 3.1: Comparison of mean and gaussian filter

3.4.1 Global Thresholding

Global Thresholding means setting the threshold value to one constant intensity value
which every pixel of the image will be compared to.

f(r) =

{
0, if r ≤ T

1, if r > T
(3.3)

It is the least complex and least resource intensive of all thresholding methods and therefore
comes with a few disadvantages. The biggest being a bad performance if the lightning isn’t
even over the whole image which is shown in Figure 3.2.[41] As the robot needs to work
well in different lighting conditions when being presented at fairs, another method had to
be tested.

Code

1 ret,thresholdImg = cv2.threshold(img,127,255,cv2.THRESH_BINARY)

3.4.2 Otsu-Thresholding

While in global thresholding the optimal thresholding value can only be found by trial and
error, otsu-thresholding will generate the optimal value for bimodal images. Bimodal images
are images whose histograms have two peaks, i.e. images with a lot of foreground pixels
with similar intensity values and a lot of background pixels with again similar intensity
values. It will automatically find an optimal value between those two peaks. All of the
images being processed for the thesis include mostly the black and white checkerboard,
therefor otsu-thresholding works excellent.[42]

Code

1 ret, thresholdImg = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
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(a) Global Thresholding (b) Otsu Thresholding

Figure 3.2: Comparison of otsu and global thresholding at difficult lightning

After calling the function the ret variable will store the calculated threshold value and
thresholdImg the generated image with this threshold value.

3.5 Histogram Equalization

Performing histogram equalization onto an image is a way to increase its contrast. By using
the cumulative distribution function of the histogram we can remap the original distribution
to an equalised distribution.[17, pp. 328-332] The general histogram equalization formula
is[43]:

h(v) = round

(
cdf(v)− cdfmin

(M ×N)− 1
× (L− 1)

)
(3.4)

h(v) is the new intensity value, v the old one. cdf(v) describes the cumulative distribution
function at v and cdfmin the minimum cdf > 0. M is the width, N the height and L the
highest possible intensity value. An image with low contrast is an image with most of
its pixels being in a relatively small range of available intensities. Histogram equalization
"stretches" the distribution over the whole available range resulting in an image with a lot
more contrast.

3.6 Morphological Transformations

For the project, it was only looked into one of the 2 basic operators of mathematical mor-
phology, erosion, the other one being dilation. The operators usually take a 3x3 structuring
element and the image as an input. They work similar to already described image filters
by shifting the structuring element over the image with the pixel to be calculated being in
the center of the structuring element. Instead of building the average, all the pixels of a
binary image being overlaid by the structuring element will be compared to the value at
its position in the structural and if one or more are false, the center pixel will get a value
of 0.[41]

3.6.1 Erosion

Erosion, as used in the project for binary images, uses a structuring element with just 1’s.
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(a) Original Histogram (b) Histogram after Equalization

Figure 3.3: Demonstration of Histogram Equalization applied to image of a checkerboard

K =

1 1 1
1 1 1
1 1 1

 (3.5)

Therefore white foreground areas will get smaller. This has a positive effect on the blob
detection which is later ran in the process. Erosion can also work with grayscale images.
Then the structuring isn’t compared to the image but the center pixel will get the minimum
value of all pixel being overlaid by the structuring element[44]. This smoothens out very
bright sections like reflections on the stone and decreases the size of bright foreground
areas, namely the human’s game pieces, making it easier for them to be detected by the
blob detector.

Code

1 kernel = np.ones((6,6),np.uint8)
2 erImg = cv2.erode(gray, kernel, iterations = 2)

The first line uses the numpy library to generate a structuring element with a size of 6 by
6. The second line then passes a grayscale, the structuring element and an iteration count
to the OpenCV function. The iterations parameter describes how often the image should
be eroded. A new grayscale image is returned.

3.7 Corner Detection

Both the Harris and the Shi-Tomasi Corner Detector use the same basic concepts to detect
corners. While an edge is apoint in the image with a strong derivative of its neighbourhood
intensities, a corner needs a strong derivation in at least two orthogonal directions. To
prevent detecting linear gradients, always the second derivative is used. To calculate how
strong the derivatives at a point are, the autocorrelation matrix over a small window around
every point is used. If the autocorrelation matrix has two large eigenvalues at a certain
point, the point is considered a corner.[45, pp. 317-318]
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3.7.1 Harris Corner Detector

3.6 shows how Harris calculates a value for each point which is then compared to a prede-
fined threshold value, to determine if a corner is given or not. λ1, λ2 are the eigenvalues, k
is a weighting coefficient wich can be set by the developer.[45, p. 318][46]

R = λ1λ2 − k(λ1 + λ2)
2 (3.6)

3.7.2 Shi-Tomasi Corner Detector

Shi and Tomasi proposed in 1994 that good corners can already be found by comparing
the smaller of the two eigenvalues with a predetermined threshold.[45, p. 318][46]

R = min(λ1, λ2) (3.7)

3.7.3 Good Features to Track Function

OpenCV provides a highly advanced function for corner detection: cv2.goodFeaturesToTrack
cv2.goodFeaturesToTrack. To control the behaviour of the method several parameters can
be set with the most important being:

• maxCorners
• qualityLevel
• minDistance
• useHarrisDetector

If the useHarrisDetector parameter is not set to true, the function will use the Shi-Tomasi
corner detector. The function returns an array of tuples with the coordinates of the corners.

3.8 Blob Detection

Blob Detection is a way to detect regions of interest. Many different algorithms exist
for blob detection but for the project just the one implemented by the OpenCV class
cv2.SimpleBlobDetector was looked into. The algorithm takes a grayscale image and
generates several thresholded images based on the parameters minimum threshold, maxi-
mum threshold and threshold step. Centers of connected components, called contours, are
then extracted. Those are called candidate blob centers. Candidate blob centers with a
similar position and from similar thresholded images are grouped together. A radius and
center are computed for each group and a new object is being generated. Those objects are
the blobs. The cv2.SimpleBlobDetector class also provides built-in filtering features. The
detected blobs can be filtered by size, color, circularity, inertia ratio and their convexity.[17,
pp. 534-536]

Code

1 params = cv2.SimpleBlobDetector_Params()
2 params.filterByColor = True
3 params.blobColor = 255
4
5 # Change thresholds
6 params.minThreshold = 0;
7 params.maxThreshold = 255;
8
9 # Filter by Area.



3. Computer Vision Algorithms (Honies) 22

10 params.filterByArea = True
11 params.minArea = 100
12
13 # Filter by Circularity
14 params.filterByCircularity = True
15 params.minCircularity = 0.8
16
17 # Filter by Convexity
18 params.filterByConvexity = False
19 params.minConvexity = 0.7
20
21 detector = cv2.SimpleBlobDetector_create(params)
22 # Detect blobs.
23 keypoints = detector.detect(im)

The code shows how to use the cv::SimpleBlobDetector class in OpenCV. First a parame-
ter object has to be created, then every available filter has to be activated to work. Also,
parameters for each filter have to be set. A SimpleBlobDetector Object can then be ini-
tialised with those parameters and its detect method can be called. Returned keypoints
store the coordinates of the center of the blob and its radius.



Chapter 4

Computer Vision Implementation
(Honies)

Computer Vision is used widely in the project. While it is mandatory to implement basic
functions like detecting the board, game pieces on the board and moves, it is also needed
to implement simple functions for controlling the game flow to prevent the human player
from having to use nonnatural behaviour while playing against the robot. Simple game flow
control functions include detecting the game start, a game pause and a restart. Every part
of the computer vision module is programmed in python and uses the OpenCV python
framework.

4.1 Game Flow

Figure 4.1 shows the general process of the whole implementation. QR Codes are used to
communicate to the robot that the game has to be started or has to be stopped.

Game Start

After starting the program and setting up the board a QR Code of the encoded string
"start" has to be shown to the robot. The machine will then detect the board and all
pieces of its opponent and will assume its own game pieces are set up correctly. It will then
start with the first move.

Game Abort

If a QR Code of an encoded "abort" string is shown to the robot while the player has the
right to move, the robot will detect it and stop the game. The engine will be reset and
the robot will move to its initial position. The program then awaits a new start signal as
described above.

Game End

If the game ends the robot will reset the engine move to its initial position and wait for a
new start signal.

23
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Figure 4.1: Game flow

4.2 Detecting the Board - Contours

For the first implementation of board detection, the OpenCV concept of contours is used.
It is tried to detect all squares of the board and sort them according to their position.
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(a) Start QR Code (b) Abort QR Code

Figure 4.2: QR Codes for Program Flow

4.2.1 Algorithm

First, the image is converted to grayscale and then a gaussian blur filter with a kernel size
of 9 is applied. Then a for loop will iterate through threshold values with a step size of 26
and the image will be thresholded with that value every time. cv2.findContours is run to
identify contours. The algorithm will then loop through the detected contours and filter
them according to the characteristics of squares:

• Convex
• 4 edges
• Minimum and maximum size
• 4 almost 90°angles between their edges (if looked on the board from above)

To reduce noise and disturbances at edges the contour is converted to an approximated
polygon of itself. The convexity of a contour can be checked by using the OpenCV function
cv2.isContourConvex, the count of edges by using len and minimum and maximum by
using cv2.ContourArea. 800 and 5000 have shown to be good values for min and max size.
To check for the angles, the max cosine of all connected edges of the contour is calculated.
0.4 has been tested out to be a good threshold value here.

4.2.2 Filtering the Fields

Detecting the squares is not enough as there will be about 10 times more squares detected
then there should be. The problem is that several squares are detected on one field. Fortu-
nately the unnecessary squares can be filtered out fairly easy by comparing their midpoints
and removing the superfluous squares from the vector. This then results in a vector with
32 squares which can be identified by their x, y coordinates and their width.

4.2.3 Arranging the Squares to their Board Position

After detecting all fields they are sorted into a 2-dimensional array with the indexes of
those representing the x and y position of the field on an 8x8 board.

4.2.4 Testing

Testing the Board Detection implemented with Contours made clear that this was not the
right approach. Different problems occurred which made it necessary to develop another,
more stable, version of the board detection.
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Lightning

The implementation just worked with perfect Lightning. Lightning had to not come from
above but from the side of the board. Also too bright lightning resulted in too much noise
and not all squares could be detected. As fairs almost always have bright lightning from
above it is not possible to use the implementation for the purpose of the project.

Perspective

As the board’s fields only represent squares when looked onto from above, the imple-
mentation made it necessary to mount the camera almost directly over the board. While
testing the robot’s ability to reach all areas of the board, it was found out that the board
needed to be placed a little bit off the robot, resulting in a too low angle of view for the
implementation to work.

Perspective

The implementation is everything else than performant and as it is not detecting all fields
reliably it needs several seconds for initializing the board. The next section will describe a
more performant and reliable approach.

4.3 Detecting the Board - Corner Detection

The last section describes why a new approach was needed. By researching different meth-
ods, it was decided to try out corner detection next. 2 corner detection algorithms were
tested and are described in the methodology section:

• Harris Corner Detector
• Shi-Tomasi Corner Detector

While both perform well, tests have shown that the Shi-Tomasi algorithm runs just a little
bit better.

4.3.1 Detection

To detect the fields OpenCV’s cv2.goodFeaturesToTrack method is used. How it works
in detail is already described in the methodology section, for the future sections, it’s just
important to know that it returns an array of tuples of the x, y coordinates of the detected
corners. While preprocessing the image was tested, it was found out that the function
actually works best if a raw picture is provided. Therefore the image was just converted
to grayscale and then the function was called. Figure 4.3 shows what corners would be
detected on a sample image of the project.

4.3.2 Mapping the Corners

The cv::goodFeaturesToTrack function returns the corners as an unordered array of tuples
with the representation (x-coordinate, y-coordinate). As the blob detection of the pieces
will return coordinates we need to know the x, y position of every field and its width
and height. Therefore it is needed to map the returned corners, so these attributes can be
extracted. The code section shows how to first sort the corners into which row of fields they
belong. It then sorts every row, so a complete map of the corners is generated with their
indices representing their x, y position on the board. After that it generates a 2 dimensional
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Figure 4.3: Returned corners from Good Features to Track Function circled in red

array of tuples for the fields with the representation (x-coordinate, y-coordinate, width,
height).

1 fields = [][]
2 #sort detected corners after y-position
3 cornerarr = sorted(cornerarr, key=operator.itemgetter(1))
4 #matrix for sorted corners
5 cornerm = [[0 for x in range(9)] for y in range(9)]
6 for i in range(9):
7 for ind in range(9):
8 cornerm[i][ind] = cornerarr[i*9+ind]
9 #sort corners in a row after their x-position

10 #so indices in matrix are equivalent to their indices on the board
11 for row in range(9):
12 cornerm[row] = sorted(cornerm[row], key=operator.itemgetter(0))
13
14 for i in range(8):
15 fields.append([]);
16 for ind in range(8):
17 #calculate height and width of field
18 x = cornerm[i][ind][0]
19 y = cornerm[i][ind][1]
20 w = cornerm[i][ind + 1][0] - x
21 h = cornerm[i+1][ind][1] - y
22 #add field to field matrix with indices equivalent to real world board
23 fields[i].append([x,y,w,h])



4. Computer Vision Implementation (Honies) 28

4.3.3 Testing

Lightning

The new algorithm works way better under difficult lightning than the first implementation.
While in the early stages of testing a cardboard with a shiny print was used, the final
version uses a matt paper print. That’s because the algorithm sometimes detected corners
at reflections of light, which can’t happen with a matt surface.

Perspective

Perspective isn’t an issue anymore with the new implementation. Corners are corners, no
matter if they are looked onto from above or at a 45°angle.

Performance

It outperforms the old implementation by far. While the old one took several seconds under
difficult conditions, the new one often only needs to analyse a single frame.

4.4 Comparison of Board Detection Methods

Figure 4.4 shows a comparison of both Methods under the same conditions. While are
corners are getting detected correctly, the contour detection is having problems especially
on the right edge of the board. Only 59 of 64 squares were detected.

(a) Contour Detection (b) Corner Detection

Figure 4.4: Comparison of Board Detection Methods

4.5 Detecting Game Pieces

Detecting the human’s game pieces is implemented by using OpenCV’s built in "Simple
Blob Detector". Although the Blob Detector accepts a raw image from the camera and
detects pieces sometimes, the image needs to be heavily preprocessed for the Detector to
work consistently. After testing various combinations of algorithms, the combination shown
in figure[insert number] has shown to be the most consistent one. Figure 4.6 compares a
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raw image with its processed one after all algorithms were applied and blob detection was
run. Detected blobs are circled in red.

Figure 4.5: Processing of the image for piece detection

(a) Original Image (b) Image after Processing

Figure 4.6: Before / After Processing and Blob Detection

4.5.1 Process

The following will describe why those algorithms were chosen, what parameters were used
for them and why they were called in that order. The goal of preprocessing the image for
Blob Detection is to remove all unnecessary colours, surfaces and disturbances to end up
with white circles clearly separated from the board, the human’s game pieces. First, the
image is converted to grayscale to remove the superfluous colours and disturbing noise
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is removed by applying a gaussian blur filter with a kernel size of 5 by 5. Then Otsu-
Thresholding is applied to get a binary image because tests demonstrated that this has an
enormous impact on the later run Blob Detection, where lots of pieces were not detected
due to light reflections. Thresholding to a binary image removes any light reflection as
there will only be white and black pixels in the output image. After those steps, Blob
Detection already ran well, but pieces which are laying almost at the edge of the field
weren’t consistently detected. Therefore the image is eroded with a kernel size of 6 by
6 and an iteration of 2. This will decrease the size of the pieces and increase the black
surface of its field, resulting in a more consistent Detection. After all that preprocessing
just a few parameters are set for the cv2.SimpleBlobDetector class, namely blobColor to
255 for white blobs, minArea to 50, minCircularity to 0.8 to only detect white pieces and
not squares, and minCovexity to 0.87 because the pieces usually don’t have any notches.

4.5.2 Finding the x, y Position

As the Blob Detector returns keypoints with x, y coordinates and a radius it is needed
to find out on which field the piece lays. How the attributes (coordinates, width, height)
of the fields are stored is already explained above. To detect on which square a piece is
located, the function simply goes over the array of fields and compares it with the detected
coordinates. For maximum consistency and as checkers isn’t a fast sport, 5 images will
be taken and only pieces which are detected at least 3 times out of 5 will be sent to the
engine. How the engine works, how detected pieces are transferred to it and how a move
is detected will be explained in the following chapter.



Chapter 5

Connecting the engine (Honies)

As already described in the methodology section, it was decided to use Samuel an open
source checkers program, written by John Cheetham, which is based on the also open-source
Gui Checkers program, written by Jon Kreuzer, for the project. John Cheetham basically
took the C++ engine code of Gui Checkers program and wrote a new GUI in python by
using the GUI Framework pyGTK. As this is not an engine with a fully documented API,
it was needed to explore the code so instead of a human input, moves can be generated
by the computer vision code and calculated moves for the robot can be extracted in a
convenient format.

5.1 Connecting Computer Vision and Samuel

Different methods are available for process communication. While pipes and sockets can
be used to communicate between processes, it was decided to use the most simplistic form
of communication. Merging both parts to start as one process so the computer vision has
immediate access to all attributes and settings of the game. The computer vision code for
detecting the board and pieces is organised as a class which starts by waiting for the start
signal (QR Code), then detecting the board and afterwards going into a loop, where it will
always monitor if a new move has been done by the human. The main thread of samuel
creates an object of the class Game where everything that has nothing to do with the GUI
is handled. After this creation, a new object of the vision class is created and the game
object is passed as a parameter. Then the main method of the vision class is started as a
new thread. The main method of samuel, therefore, looks like this:

1 def run():
2 g = Game() #create game object
3 v = Vision(g)#create vision object
4 thread.start_new_thread(v.main, () ) #start main method of vision class in new

thread
5
6 #start GUI
7 Gdk.threads_init()
8 GObject.threads_init()
9 Gtk.main()

10
11 return 0

31
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5.2 Board Representation

For performance advantages, especially move calculating, the Gui Checkers engine doesn’t
use a two-dimensional array to store positions, but a one-dimensional array with the values
shown in the table being the indices in the array.

37 38 39 40
32 33 34 25

28 29 30 31
23 24 25 26

19 20 21 22
14 15 16 17

10 11 12 13
5 6 7 8

The status of a field is stored using integers:
• 0 if the field is not occupied
• 1 for a red/black piece
• 2 for a white piece
• 5 for a red/black king
• 6 for a white king
• 8 if the index isn’t a field

Therefore the initial starting position of the pieces looks like this:
1 board_position = [8, 8, 8, 8, 8, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 8, 0, 0, 0, \
2 0, 0, 0, 0, 0, 8, 2, 2, 2, 2, 2, 2, 2, 2, 8, 2, 2, 2, 2, 8, 8, 8, \
3 8, 8, 8, 8, 0, 0, 1]

5.3 Detecting a Move

It is only possible to pass a move to the engine when having the start and end point of
the move. To determine if the human made a move the implementation needs to compare
the new board position with the current engine position. To do that, a new board position
is generated by copying the engine position and setting all entries of the human’s color to
0. The positions of the detected pieces are converted to the engine’s board representation
and a 0 at that position is overwritten by an integer of the human’s color. Then the arrays
will be compared for an occupied field by the human on the current engine position and
an unoccupied field on the new board position. This is the starting position of the move. If
such a field isn’t found, the process will go back to taking pictures again. After the starting
position is found the end position will be found by comparing the arrays for an occupied
field which was unoccupied in the old position. The following engine method is called to
check if the move is legal if so it will return a new board position following the executed
move.

1 board_position = engine.hmove(self.src, self.dst)

The engine also sets an attribute of samuel called legalmove, which can have 3 values:
• 0 - the detected move is illegal
• 2000 - the detected move is legal, but the human can move again as he "jumped"

one of the robot’s pieces
• everything else - the detected move is legal and it’s now the robot’s turn
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5.4 Generating a Move

After submitting a legal move to samuel, it will be displayed and the process of calculating
the next move for the robot is started by samuel. For the GUI to be still usable, this is
started in a new thread. To get the next move the following function is called.

1 board_position = engine.cmove(str(self.side_to_move))

However as this code shows, the C++ engine just returns a new board position instead of a
source and a destination. To avoid changing the engine code, simply the same algorithm as
used for detecting human moves is run with the board position before the calculation and
the new one. However it is also necessary to detect which game pieces are "jumped" by the
robot’s move and therefore need to be removed from the board. To do so a new algorithm
was developed which compares the old board representation with the newly generated one
and detects human pieces which were removed. It then sends one command per removed
stone to the robot to remove it.

5.5 Passing a Move from the Engine to the Robot (Weller)

5.5.1 General

The Arduino is significantly less powerful than a normal laptop not only in the sense of
computation power but also in the sense of space available.
Since samuel is written for Windows and has requirements above the capabilities of an
Arduino the engine was installed and used on the laptop that is connected to the robot.
Because of this it is necessary to use methods for passing the calculated moves to the
Arduino or Blender.
For this a syntax was developed to describe the maneuvers in a simple and easy to parse
way.
As mentioned before the moves are either first captured by CV and then parsed into the
engine or calculated in the engine. These moves are then converted to a character sequence
with a predefined syntax and sent to the Arduino or Blender.
It has to be noted that, after being controlled by the engine, the commands are never
checked for validity. The reason for this is, that it is expected of the engine to register
illegal moves and prohibit them from being sent.

5.5.2 Syntax

The syntax for the messages consists of multiple variable separated by commas “,”.
At the beginning is a character describing the player i.e. h for human player or r for the
robot.
Following this is the character determining the type of move. Possibilities are a normal
move i.e. moving a stone from one field to a different one, removing a stone and adding a
stone.
The message is concluded by the x- and y- coordinates of the start- and end field also
separated by commas.

1 move = '[player],[type of move],[start row],[start column],[end row],[end column]'

[player],[type of move],[start row],[start column],[end row],[end column]
Example lines:

1 h,m,3,1,4,2
2 r,a,0,0,5,3
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Figure 5.1: Visualization of example moves

In special cases, i.e. adding and removing stones, some fields are discarded since they
do not affect the maneuver. For example when removing a stone there is no end row or
column since the stone will be placed on a predetermined player specific pile.
The opposite, i.e. no starting row and column, is applicable when adding stones since they
are taken from the team pile.
Remove:
[player],r,[start row],[start column],0,0
Add:
[player],a,0,0,[end row],[end column]

5.5.3 Basic Implementation via a txt File

Figure 5.2: Text file implementation

The first version of the communication model for passing moves from the engine to
the controller uses a simple .txt file. This file contains every move passed by the engine
and gets expanded with every new command by the engine. The controller then repeatedly
checks for changes in the file and if any are found he reads the added commands from it.
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Through this file the robot can not only be told to move -, remove - and add stones but
also to end a turn, meaning that he moves his hand to the default position and waits for
file changes.
The changes are parsed line by line, split by commas and then saved into separate vari-
ables. These variables are then used to call the according functions with the parameters.
This approach was tested with the Blender simulated robot. Instead of direct input from
the engine a testing file already containing several moves was used. The python script
read it and executed the commands successfully but nonetheless different functions were
implemented and tested, and used in the final product.
Several factors lead to this decision. Big factors against this approach were the overhead
and inefficiency problems. Opening a file, writing to it, closing it, opening it again from a
different script and then reading it adds significant overhead to a simple transportation.

5.5.4 Second Implementation via PIPE and Subprocess

Figure 5.3: Subprocess implementation

These disadvantages can be solved or reduced by using the Python module subprocess.
This module allows, amongst other things, to start other Python scripts as child subpro-
cesses of the current process and connecting their in- and outputs via various operations.
[47, p. 358]
For this implementation the in- and outputs have been connected using pipes. When a
subprocess tries to write to its standard out, e.g. the shell, it will instead be rerouted to
the the standard input of the parent process.

1 child = subprocess.Popen(["python", "./exampleFile.py"],stdout=PIPE,stderr=PIPE)
2 output,errors = child.communicate()

This is a simplified version of the code used for the communication.
It starts exampleFile.py as a subprocess and reroutes its error- and standard output via
pipe to the parent process (subprocessRead).
The function communicate() reads everything from the pipe after the child has terminated
and saves the standard output and error output to two variables. [47, p. 360]
Using the before shown files the communication was tested and several reasons for another
implementation became apparent.
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Even though this approach is more efficient, there were problems with the communication.
Subprocess only allows to read the output after the child process has been terminated.
Simultaneous execution and communication was needed for this thesis, since the engine
sends the moves and then waits for the turn of the human. It would be necessary to always
start the engine from anew with the current game field to be able to use subprocess. Again
this would produce unnecessary overhead. [47, p. 360]

5.5.5 Third Implementation via Sockets

Figure 5.4: Socket implementation

The third and final implementation replaced the pipe communication with a server
and client.
This removed the unnecessary overhead of starting the engine or accessing a file every turn.
Instead a local connection via sockets is created which allows simultaneous and instant
messaging.
On the server side a listener was created that listens on a specific port for a connection
request. After a successful authentication messages can be sent to it. A big advantage of
the used implementation of the listener class is that it allows the transport of any python
object through its connection. [48]
This means that the client, after he connects to the server using a connection request to a
specific port, can send messages via that connection containing e.g. strings.[48]
These messages are saved on the listener side and are not lost even after the client has
disconnected. This and the fact that messages are saved in the order of their arrival allows
the two scripts to run parallel, because even if the robot takes too long and a new move
has already been sent to it, it can complete its current turn and then read the next one
from the buffered listener when it’s ready.[48]
The communication was tested by implementing a local server in the Python script that
controls the simulated robot and a simple client script that connects to the local server
and sends example moves. In this client script not only normal moves, i.e. robot move a
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game piece from field 2:7 to field 3:6, were sent but also multiple moves in a short amount
of time and moves after a pause (30 seconds).



Chapter 6

Real Robot (Weller)

6.1 General

The Inmoov used for this thesis was built by Maker Austria and is based on an older
version. In comparison to the newest version it lacks the lower body, including feet, and
only has one eye.

Two Arduinos are used to control the robots 23 motors.They are connected to the
computer via USB cables and can be addressed separately, which simplifies e.g. movement
of the left and right hand simultaneously.

6.2 MRL

(a) MRL startup (b) MRL in usage

Figure 6.1: MRL GUI

To program the robot, MRL was used instead of the default Arduino IDE. MyRobotLab
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includes certain features and libraries specifically tailored for Inmoov.
These include, but are not limited to, libraries for servos, OpenCV, Inverse Kinematics and
gesture creation. MRL also has an Python Interpreter capable of translating the Python
code to Arduino compatible code.
It can either be used via a Java Swing GUI or a WebGUI, both having disadvantages. The
GUI tends to crash when starting or when activating features. The WebGUI on the other
hand does not support most features.
For this thesis the default Java Swing GUI was used. Inside this user interface a Python
IDE, with limited features, is available. When a Python script inside this IDE is written it
is capable of accessing every library of MRL. This is possible via the Runtime class, which
allows to start certain services and then attach them to the program.
When using MRL in combination with an Inmoov, and control of the robots sensors or
motors is necessary, the Arduino service has to be connected to the current Python script,
as explained before:

1 comPort = "COM7"
2 arduino = Runtime.start("arduino","Arduino")
3 arduino.connect(comPort)

Furthermore for every servo used, a new service has to be created and started. This
service is then attached to the arduino service via its pin and optionally the range of the
servo can be set or mapped to different values:

1 mtorso = Runtime.createAndStart("mtorso","Servo")
2 mtorso.attach(arduino,26);
3 mtorso.map(15,165,148,38);

In this example the map means, that the values 15 and 165 are changed to 148 and 38,
so if the script moves the servo to 38 in reality the servo moves to 148.

This servo can then be controlled from inside the Python script:
1 mtorso.moveTo(50)
2 sleep(0.5)

Furthermore it is possible to create and attach the servos in a script and then control
them through the UI:

Figure 6.2: Controlling a Servo from the UI

6.3 Limitations

The biggest limitation of a non-virtual robot is the influence of physics. When raising
its hand through the gravity and change of angle it will slow down and thus an error of
"‘virtual"’ position input and "‘real"’ position output is created. This error can also be
seen when moving towards certain positions from different sides. The settings of certain
servos might work from one direction but can be completely wrong from another.
A limitation specific to the Inmoov lies in the grabbing of objects. The hand was not
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designed for grabbing small objects. He can only rotate his thumb towards his palm but
not towards his fingers, which would be needed when grabbing e.g. draught pieces.

6.4 Inverse Kinematics

6.4.1 General

The aforementioned uncertainty can lead to wrong positioning through IK even though
the calculation were correct. Several IK algorithms were tried to circumvent this problem
but none could reliable move to every game field from every field reliably.

We tested the following libraries included in MRL:
• Inverse Kinematics 3D
• Integrated Movement

6.4.2 IK3D

MRLs first IK library was used at the beginning. It was first only developed as a 2D IK
solver but got expanded into a 3D solver.

Amongst the problems of IK3D are the tendency to crash and lack of documentation.
These factors paired with a missing community support lead to the decision of moving to
a different library.

6.4.3 Integrated Movement

After IK3D a newer implementation called Integrated Movement was tested. It is currently
work in progress and has limited functionality.

6.4.4 KDL

The last library tested was the Kinematics and Dynamics Library(KDL). This is also the
library underlying the Blender iTaSC IK Solver.

Problems with KDL are the missing integration with the Inmoov. For different robots
there are already presets available but for the Inmoov everything would be needed to be
calculated from the ground up.

6.5 Movement with IK

As aforementioned when using IK to calculate and carry out movement on a real robot
there always exists a certain error margin that needs to be considered. There are ways to
reduce or completely eradicate this margin e.g. by using cameras to check if a correction
factor needs to be applied or by simply building the robot with more accurate motors.
Neither of these were available for the Inmoov. Even though it would be possible to create
such a system that uses the eyes or external cameras to monitor and correct the movement,
this system would have been too complex for this thesis, instead the movement errors have
been minimised by always moving to a fixed position in-between every turn.
The robot is controlled from inside MRL with a Python script. This caused problems,
because at the time of development, MRL had severe problems e.g. crashing when started
or not being able to connect to the Arduinos. Because of this after several weeks of devel-
opment the focus of the thesis was switched to a virtual version of the Inmoov.
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6.6 Grabbing stones

Since the hand of the Inmoov makes grabbing game pieces problematic a small electromag-
net is used. When grabbing game pieces the robot moves its index finger above the game
piece and then activates the magnet. While moving the game piece sticks to the finger and
after reaching the target the robot releases the game piece by deactivating the magnet.

6.7 Human-Robot-Interaction

The human interacts with the robot through a game of draughts. This allows a less serious
interaction with a humanoid robot than it would occur in most real life situation e.g. in a
car producing facility. Because of the appearance of the robot a more "‘human"’ enemy is
created.



Chapter 7

Simulated Robot

7.1 General

To simulate the robot a 3D representation is used inside of Blender. This model is rigged
using an armature, which represents the skeleton of the model and defines movement and
limits of the robot. The armature is necessary for the Inverse Kinematics and the realistic
movement.
In addition a target armature consisting of a single bone was created because the Inverse
Kinematic Solvers implemented in Blender need an end point for their calculations.

7.2 Limitations

The biggest, intertwined limitations are the human robot interaction and the realism of
the robot. By using the real robot the human user has the robot in front of him and he
can directly interact with it. The virtual robot on the other hand has an additional stage,
namely a laptop etc. that displays the robot. The impact of this stage can be minimized
with virtual reality i. e. a VR headset. The realism limitation is not only limited to how
real the robot looks but also includes the movement, since simulated and real physics can
differ.

7.3 Inverse Kinematics

Inverse Kinematic Solvers can be applied to any model in Blender on the condition that it
has an armature rigged to it, including an end bone that can be used as an end effector,
and a target object exists.
Blender provides multiple Inverse Kinematic Solvers:

• Standard
• iTaSC

– Damped Least Square
– Selectively Damped Least Square

7.3.1 Standard

The standard IK function first calculates the Jacobian Matrix and inverts it. Because
of this the standard IK solver is not a dynamic solver because neither masses, forces nor
accelerations are taken into account and thus the realism of movements may vary. [49]
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7.3.2 iTaSC

iTaSC, short for Instantaneous Task Specification using Constraints, consists of multiple
parts:

• Solver including parts of KDL which is an open source kinematic library
• Plugin system to support multiple IK solvers
• Template library for matrix operations
Like the standard IK solver iTaSC first calculates the Jacobian Matrix and then inverts

it, but it uses a different method for the calculations which allows it to factor in differ-
ent constraints. iTaSC also allows multiple weighted constraints and a stateful / stateless
mode is included. The stateful mode is referred to as Simulation mode and factors in time
in the calculations. In a standard calculation joint velocity is ignored but in Simulation
mode the joint velocity between two frames is taken into account allowing it to be up to
40 times as fast, compute more natural movement, hindering pose flipping and handling
bigger armatures.[49]
The stateless mode, called Animation mode, on the other hand does not take joint ve-
locity into account and thus can lead to pose flipping and performance loss. The name was
chosen because it is the preferred mode for animators who don’t want to be restricted in
their movement by previous frames.
Animation mode still benefits from multiple constraint types and multiple constraints per
bone.[49]

Configuration

The easiest way to configure iTaSC is via the Blender GUI, since the plugin is fully inte-
grated into the UI.

Figure 7.1: Configuration of an armature for IK

To simulate the IK at a realistic standard multiple components and constraints need to
be set up. The default values of these are set to be as open as possible, meaning that they
do not restrict translation or rotation, instead they allow the user to set the restrictions
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according to his needs.[49]
One of these constraints is the restraint of rotation of a bone compared to his parent bone.
This rotation constraint describes the maximum allowed X,Y and Z rotation along the
local axis of the bone compared to the parent. The default value for these parameters is
unrestricted. This allows the child to rotate on every axis without limits. When a user
wants to simulate realistic movement these unrestricted rotations can be problematic since
a real object e.g. a human has certain limits. These parameters have to be known and
configured properly to allow reasonable movement and inhibit unrealistic situations.[49]
To better showcase the configuration of these parameters in this thesis images and expla-
nation of their effects on the armature will be presented in the following paragraphs.

7.3.3 IK Constraint

The first necessary step is to add the IK Constraint must be added to the end effector
bone. Without this step the IK can not be used with the armature since the default bone
has no IK and thus no end effector exists to control the remaining rig. [49]
In this constraint it is also possible to determine how much weight to give to each parameter
of the target object. For example if the location weight is set to zero the location is not
important, but it will still affect the rig. These parameters can also be set according to
axis i.e. how the axis location and rotation of the target will affect the end effector.[49]

7.3.4 IK Solver

In the armature tab it is possible to choose the IK Solver used for the calculations. The
options for this parameter i.e. Standard and iTaSC, have already been discussed in [chap-
ter][section]. Additionally it is also possible to set the precision, the maximum amount of
calculation iterations and the mode of the IK Solver.[49]
SDLS stands for selectively damped least squares and DLS for damped least square
respectively. In comparison to the Jacobian Method these algorithms reduce the jitter and
shaking that may emerge when the end effector is trying to extend to something out of
its reach. SDLS is an extension of DLS and is able to converge in fewer iterations and not
needing damping constants.[49]

7.3.5 Bone Configuration

As mentioned before a realistic simulation needs to adhere to certain physical limits e.g.
rotation. Each bone in the human body has certain rotation limits in comparison to each
connected bone. These limits are controlled by their joints which need to be simulated to
maximise realism.[49]
Blender allows the configuration of each axis rotation limit separately and even as a section
or completely lock it. It also draws these limits in UI to simplify the process. In this example
the X- and Y-axis rotation has been limited but the bone can rotate freely on the y axis.[49]
The values used for the limits of this thesis are only approximates of real world human
limits and may diverge from real life limits to some degree.

7.4 Movement with IK

Blender has an built in Python IDE for development and a Python module called bpy that
is capable of accessing every functionality of the program including everything a user could
access using the UI.
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There are several modules inside bpy but for this thesis mostly bpy.data was used.
The module allows the program to access the scene data e.g. model position.
Every object in a scene is saved inside bpy.data.objects and can be either be accessed
by using the name of the object and a get function

1 bpy.data.objects.get("name")

or directly using the name as a key
1 bpy.data.objects["name"]

This feature was taken advantage of by naming every stone in correspondence to the
field it is situated at the beginning of the game and renaming it after every move to the
updated location.
This allows an easy way to search for a stone by simply creating a string that matches the
wanted coordinates:

1 name = 'stone'+str(ROW)+str(COLUMN)

Because Blender needs a target for an IK Solver an invisible object was created named
“target”. When the simulated robot needs to move its hand the target models coordinates
are repeatedly changed towards the target to create a smooth movement.

1
2 def makeMove(self,startRow,startCol,endRow,endCol):
3 self.moveToField(startRow,startCol)
4
5 nameS = 'stone'+str(startRow)+str(startCol)
6 nameE = 'stone'+str(endRow)+str(endCol)
7 bpy.data.objects[nameS].name = nameE
8
9 parent = bpy.data.objects.get("target")

10 child = bpy.data.objects.get(nameE)
11
12 self.makeParent(parent,child)
13
14 endX,endY = self.getFieldCoord(endRow,endCol)
15 targX,targY,targZ = self.getTargetLoc()
16 self.moveTargetSize(targX,targY,targZ,0,0,0.10,10)
17 targZ += 0.10
18
19 self.moveTarget(targX,targY,targZ,endX,endY,targZ,10)
20
21 targX,targY,targZ = self.getTargetLoc()
22 self.moveTargetSize(targX,targY,targZ,0,0,-0.10,10)
23 targZ -= 0.10
24
25 child.parent = None
26 bpy.data.objects[nameE].location.xyz = (endX,endY,targZ)
27 self.moveToField(0,0)

Several types of moves are possible during a game:
• Moving a stone
• Removing a stone
• Adding a stone

7.4.1 Basic Steps

Each maneuver starts with the same steps, namely finding the stone affected by the move
and parenting the target object to the stone.
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7.4.2 Moving a Stone

When moving a stone from one field to another these basics steps are follow by a name
generation for the moved stone. Subsequently the coordinates for the goal field is calculated
and the end effector bone is moved to these coordinates. After reaching the destination the
parent child relationship of the game piece and the bone is broken up. To allow the other
player to make his move without interruption or collision the arm is then positioned at a
resting position outside the game field.

For adding and removing stones fixed points are defined at the start of the program
where the out of game stone are stored. These points are called graveyard.and they are
represented by one stone for each team, coloured according to the team colour.

7.4.3 Removing a Stone

When stones are removed from the game they go through the default move and then they
are moved to the proper graveyard. There their parent child relationship is reset and they
are unlinked from the scene and then deleted. The unlinking from the scene is a blender
specific necessity to be able to remove models.

7.4.4 Adding a Stone

Before adding stones the team of the current player is first checked and then the arm of
the robot is moved to the according graveyard. As explained before deleted stones are
completely removed from the game. This means that when the player wants to add a stone
it is necessary to create a new object. This is accomplished by copying the model and the
data of the graveyard stone and then renaming it according to the naming conventions
i.e. stone[Destination Row][Destination Column]. Subsequently the steps of a normal move
are followed.

7.5 Grabbing Stones

The grabbing of stones is only simulated by a small animation, since there is no physics in
blender and because of this the fingers of the robot would have no collision with the pieces
and they wouldn’t move them. For the movement the current game piece is parented to
the target bone of the IK Solver and the bone is moved to the target.
Because the armature of the robot is also linked to the target bone it now looks as if the
robot is grabbing the game piece, moving its arm to reach the new location and holding
the game piece during this movement. After reaching the destination the robot releases the
stone, meaning the parenting of the game piece is reset, and the robot moves its arm back
to the default position leaving the stone behind.
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7.6 Increasing the Realism

Figure 7.2: Comparison Blender Render and Blender Camera Persp

A big problem of a simulation is not only unrealistic movement but also how realistic it
appears. To reduce this several approaches were tested.
Firstly a model for the robot had to be chosen. As discussed before VirtualInmoov was
chosen and the armature was restricted to realistic limits.
As a representation of the player a minimalistic human model was inserted and slightly
adapted by increasing the smoothness and adding a basic texture.
At the beginning the game board was a simple black cube, but later on a wood texture
was added and UV unwrapped. Additionally a dish was placed next to the board for the
graveyards of the teams. This bowl was modelled out of a cube and also includes a wood
texture.
Lastly the render module was chosen. Blender allows the user to choose between Blender
Render, Cycles Render and Blender Game.
Cycles was chosen because its advanced material creation and render options, especially
the possibility to set the samples per pixel in a render, which reduces so called fireflies.
To further decrease fireflies in the render additional light sources were added.

(a) Three samples per pixel (b) 150 samples per pixel

Figure 7.3: Comparison fireflies depending on samples
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Figure 7.4: Final Render using cycles, 150 samples per pixel and one additional light source

7.7 Human-Robot-Interaction

In the simulation there is less HRI than in a real world solution, since the user can not
directly interact with the robot. In a real world solution the user is able to touch and
examine the robot directly whereas in the simulation he can not touch the robot and needs
to use the Blender interface and controls to examine the robot.
Another problem is the HRI on the game board. The real world game board is scanned
using CV, parsed to the engine and then sent to a Python script inside Blender where a
simulated game board is changed to replicate the real game board.
This copying mechanism can only be done in one way, since the simulation can not directly
affect the real world and thus can’t change the position of the game pieces. Because of this
a human assistant or real robot is needed to redo the simulations game moves.



Chapter 8

Conclusion

8.1 Computer Vision (Honies)

8.1.1 Conclusion

As stated in the introduction the goal for the computer vision part was to reliably detect
a board and game pieces under different and difficult conditions. It has been shown that
corner detection works fast and stable for board detection. To prepare an image for piece
detection several image processing algorithms are run. Especially Otsu-Thresholding and
Erosion are important steps for a predictable outcome. As a final step blob detection is
applied to detect the pieces. The implementation was tested heavily under different light
conditions to ensure the work can be shown not only in a laboratory but also in real-world
examples.

8.1.2 Discussion

While the given implementation works solid, one of its advantages is definitely that it can
be adapted easily. Through its clean code base everyone can use it as a playground for
OpenCV algorithms to see how they would impact the solution. For example, by adding
positive/negative machine learning algorithms for the game piece and corner detection, the
program could be improved massively.

Future Work

Another goal of the project was to develop a solution which cannot only be used for checkers
but can easily be adapted for different games which are also played on a checkerboard.
While the board detection could be used without any modification for future projects like
chess, the piece detection needs modifications for every sort of game piece that needs to
be detected. For chess pieces color-based algorithms could be used as a relatively easy way
to detect tall pieces from an angle. However this would mean that instead of the standard
black and white pieces, flashy colours like yellow and red have to be used.

8.2 Engine (Honies)

8.2.1 Conclusion

To ensure a fully functioning project without breaking the scope of it, an easily adaptable
engine and GUI had to found. Samuel meets this criteria and is now fully integrated. The
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computer vision part is connected by running a new thread directly in samuel while the
robot is connected using TCP Sockets.

8.2.2 Future Work

For future projects the amount of time needed to integrate or develop a engine heavily
depends on the game. Chess could be integrated more easily than checkers as there are lots
of standardised and well documented engines, for example Stockfish, available. However
engines for other games, especially less famous ones, may require more modification or
there might even be none available. This would impact development time massively.

8.3 Simulation (Weller)

8.3.1 Conclusion

The goal of the simulation was to create a realistic representation of the robot, as well
as the game and interaction. To achieve this goal a IK Solver, that allowed parameters
to control the realism of movement, and the simulation environment was adapted by e.g.
adding textures to the objects.
Realistic movement was possible, because the IK Solver iTAsC is able to compare every
movement with the previous and thus prevent impossible or illogical positions.
Via the connection of the engine and the Python script controlling the robot, which was
implemented using sockets, moves are transferred and performed.
The script can differentiate between adding, moving and removing game pieces. Allowing
not only a normal game flow but also a realistic resetting of the game board.
Furthermore configurations were made to allow realistic visualisations. The computers used
for this thesis were not able to render these in real-time, instead the camera perspective
was used for testing.

8.3.2 Discussion

As expected and discussed in section 7.7 the biggest problem of the simulation is the Human
Robot Interaction. The user can only indirectly interact with the robot and the real game
board has to be set by a human assistant or the opponent, because the simulation cannot
access or control it.
The biggest advantage of the simulation were the simplicity of testing and implementation,
since physical limitations, i.e. weight of the arms, did not play a role in the movement and
thus the IK had no error margin that had to be taken into account.

Future

With the advance of hardware faster computers or current supercomputers and improved
IK algorithms the speed and realism of IK calculations can be improved and the simulation
can be rendered in real time instead of the view through the camera perspective.
This would allow a more realistic experience, while at the same time reducing the risks
and circumventing the limitations of a real robot.



8. Conclusion 51

8.4 Real Robot (Weller)

8.4.1 Conclusion

The two Arduinos built into the Inmoov were controlled via a Python script inside MRL.
This script uses the built in services Servo and IntegratedMovement to control the robot
and move the arm to certain positions.
Due to the design of the hand, especially his thumb, he is not able to grab game pieces.

8.4.2 Discussion

Though the advance of 3D printers and the open source community allowed the creation of
Inmoov, there are still several problems that need to be solved before he can play checkers
in real life.
Firstly the servos, in the maker austria model, need to be replaced with more accurate and
powerful servos to allow exact movement.
Additionally a different material for the robot has to be used to reduce the amount of
bending it undergoes when moving to extreme positions e.g. raising his hand.
The design of the hand has to be redone to allow a grabbing motion capable of holding
small objects i.e. game pieces.

Nevertheless it is possible to create a checkers playing Inmoov. To achieve this without
implementing the aforementioned changes some measures have to be adopted.
A system to accurately assess the real position of the hand or finger has to be created.
This can be implemented e.g. via a camera system capable of comparing the wanted and
reached position.
Secondly the hand and game pieces have to be slightly adapted with e.g. electromagnets
or modelling them in a special way to circumvent the grabbing problem.

Future

More accurate servos and different materials combined with working and documented IK
libraries can allow the Inmoov to not only play checkers, but instead be used in many
different applications e.g. as an assistant physiotherapist.



Glossary

OpenCV Open Source Computer Vision Library

HRI Human Robot Interaction
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