
Physics Competitions Vol. 15 No 1 & 2 2013

page 33 / 85

Programming Low End Robots

1B. Tiefengraber, 1C. Jung, and 1–3M. Stifter
1HTBLuVA Wr.Neustadt, Department of Computer Science,
Wiener Neustadt, Dr. Eckener-Gasse 2/Austria, tiefengraber.bruno@gmail.com
2Danube University Krems, Center for Integrated Sensor Systems,
Wiener Neustadt, Viktor Kaplan Straße 2/Austria, michael.stifter@donau-uni.ac.at
3Vienna University of Technology, Institute of Sensor and Actuator Systems,
Vienna, Gusshausstraße 27–29/Austria

Abstract
This paper discusses the problem of programming low end robots like an Arduino
platform from the perspective of two students at the age of 18 [1]. B. Tiefengraber
and C. Jung are currently students of the Federal Secondary College of Information
Technology located in Wiener Neustadt and members of an amazing team. This pub-
lication is aimed at supporting those secondary school students who would like to
enter a robot tournament. Hopefully, they will benefit from the experience of the au-
thors who have successfully participated in the Global Conference on Educational
Robotics 2013 in Norman/Oklahoma [2]. Optimization of low end robots is important
due to their limited resources in respect of the programming capabilities. Other con-
straints of low end robots are usually the limited sensor sensitivities, resulting in a
sophisticated data processing.

Introduction
Platforms like Arduino are rapidly claiming the commercial aspect of Robotics. But
most of the commonly used platforms sacrifice high performance in order to maintain
accessibility. These low performance robots are available to a broad audience, but
programming complex algorithms on these platforms is a greater challenge than that
for high end robots or PC’s. Nevertheless, the low performance of these robots does
not limit its application, as long as the implemented code is efficiently written by the
programmer [3].

The proposed projects on the HackADay – website provide an insight into how com-
prehensive the applications of the Arduino platform can be [4]. Young engineers deal
e.g. with trivial things like a mailbox robot notifying you if there is a new mail to more
advanced implementations like an Arduino-controlled QuadroCopter [5, 6].

Physics Competitions Vol. 15 No 1 & 2 2013

page 34 / 85

A server-client technology is often applied to centralize the logic platform behind the
robot. Robots simply act as a client, transmitting sensor values and executing com-
mands from the server. The bottle neck of this approach is the limited capability re-
garding the response time in this command structure. Programs that run directly on
the autonomous robot react faster to any problem that occurs during the operation of
the robot.

This publication will provide a guideline on programming low end robots and on the
way how to optimize the program code for these demanding platforms.

Methods in Programming on Low Cost Robots
The most important method that needs to be established when working on low end
Robots is using the Preprocessor [7].

The Preprocessor helps writing a source code by defining constants that get replaced
by literals before being compiled. It makes the code more readable, ensuring that you
cannot edit the values during runtime and taking up less memory during runtime
when using standard variables.

Knowledge of your Firmware
When programming on desktops you really appreciate high level application pro-
gramming interfaces (API’s). They won’t require excessive testing and generally help
you programming. There are often a lot of API-layers.

Robot API’s do exist, but most of the time they are hardly optimized and therefore not
suited for low performance robots. There is a way out – most of the low end robots
have an Open Source firmware, enabling an open access of the source. Download-
ing, reading and modifying the firmware can improve the performance a lot. It also
helps you understand how the firmware operates.

Robots start to support more and more programming languages. Until recent years
you were limited to C and maybe some C dialects. Nowadays you get a wide variety
of languages ranging from C++ to Java or even Python. With the support of wide
spread desktop languages like Java a huge step to improve the applicability is done.
In the case of low performance robots you must carefully select the considered pro-
gramming language.

Java, for example, is really widely spread, which makes the chance very high that the
young programmer is already familiar with it. But you have to consider the additional
performance the Java virtual machine (JVM) needs [8]. Additionally, Java doesn’t run
without the JVM. The JVM is another abstraction layer which is not controllable by
the programmer. Hence, robot programming requires a thorough knowledge of the

Physics Competitions Vol. 15 No 1 & 2 2013

page 35 / 85

programming techniques and the programming language chosen for the software
development.

Code Efficiency
Writing an efficient code is strongly recommended on low end robots. Correctly im-
plemented software even at low end hardware can run the most complex algorithms.
Control algorithms require quite a lot of experience regarding optimization, but there
are also a few smart tricks you can use for better performance in general.

This is an example of a widely applied code snippet. The program reads the distance
of the front sensor from sensor-port 0. If the distance is larger than 10, it loops over
the operation. In the loop the distance is read-out continuously and saved into a vari-
able. Then the distance determines the next steps of the robots actions.

At first glance this code looks quite simple and you wouldn’t even think about optimiz-
ing it, but there are two major flaws in this bit of code.

First Flaw: Lots of Garbage
Every iteration cycle of the loop the integer distance will be allocated. This results in a
lot of allocated memory space without any pointers [9]. Some languages like Java
use a garbage collector that interrupts your program temporarily and clears alloca-
tions to variables. Garbage collectors interrupt the program at scheduled times and
are often the reason of randomly appearing mysterious error messages in Java
based robot programming.

Other languages like C++ don’t have a garbage collector in the background. This re-
sults in a lot of memory space which is allocated and therefore unfeasible for pro-
gram operations. The programmer could now de-allocate the allocations but that is
cumbersome.

The central problem in robotics is that you want the most current values you can get.
So if the robot is driving straight ahead to a wall and you want to stop it in front of it
minimizing the distance between the wall, every additionally millisecond of controlling
the robot results in a lot of iterations through this loop.

With the following code snippet you can fix this problem:

while(analog_read(0)>10){ //check distance of front sensor
 int distance = analog_read(0); //save distance into a variable
 … //do something with it}

Physics Competitions Vol. 15 No 1 & 2 2013

page 36 / 85

Now the integer distance is allocated once again and every iteration cycle is overwrit-
ten.

Second Flaw: Multiple Reads
While the programrs always want to have the most current values, the procedure of
reading twice in two consecutive lines is not very helpful. Sometimes it even happens
that one of the read-out data is a noisy value. It depends a lot on the firmware and
how the data can be discriminated.

There are events where the firmware buffers values for all sensors at all times and
updates them every, e.g., 100 milliseconds. This is often a problem since the value
which the program receives could be up to 100 milliseconds old.

Very often sensor values fluctuate a lot, which makes accurate calculations nearly
impossible. When a firmware does not store the values, this might result in large dif-
ferences between the two values in the sample code. An efficient way to reduce fluc-
tuation of sensor values are filtering techniques described in section 5/sensor values.

To eliminate the differences between consecutive values you can apply the following
code:

By initializing the variable distance with a sensor value and updating it at the end of
the loop the code doesn’t need to be read in the while-condition. Now the code
should be running a lot more smoothly.

Sometimes, a loop is used as a method to wait for a certain event when programming
robots. In that case the following code snippet is more convenient:

int distance;
while(analog_read(0)>10){ //check distance of front sensor
 distance = analog_read(0); //save distance into a variable
 … //do something with it}

int distance = analog_read(0);
while(distance >10){ //check distance of front sensor
 … //do something with it
 Distance = analog_read(0); //save distance into a variable}

driveForward(); //start motors
while(analog_read(0)>10); //checks distance of front sensor
stop(); //stops the motors

Physics Competitions Vol. 15 No 1 & 2 2013

page 37 / 85

After the motors are started, the loop will be repeated until the sensor value is lower
or equals 10, but this program will discharge the robots battery continuously.

During execution this loop will use up all the performance of the robot because there
is no pause in the loop. This causes problems when operating on robots with just a
single core and multiple threads.

With this code snippet the robot will wait 10 milliseconds after every check. When
optimizing an algorithm, you normally start with an inefficient version. The optimiza-
tion process is limited by the running time or the allocated memory. In robotics you
also have to consider applicability of the battery and its lifespan. An optimized algo-
rithm often has much more code lines than the raw code. But the code length should
not be a criterion. Paul Masurel wrote on his blog about intersecting linked lists in
Python [2]. In the optimized code version he went from a five line code to 50 lines.

Sensor Values
Sensor values tend to fluctuate around a given value. These fluctuations have vari-
ous reasons and should be handled properly by the program of the robot. For that
purpose programs often use smoothing algorithms. These filter techniques can be
done by hardware or software actions. In this publication this problem is solved by a
code.

Figure 3 shows the
difference a smoothing
algorithm can make. The
raw data come from an
infrared distance-sensor.
From the overall 1400
values this particular
smoothing algorithm leaves
all values that are out of
tolerance of the previous
ones. This results in an
abstract view of the data
without losing too much of
the reasonable values.

driveForward(); //start motors
while(analog_read(0)>10){ Sleep(10); } //checks distance of front sensor
stop(); //stops the motors

0

100

200

300

400

500

600

700

300 600 900 1200 14000
Counter	 values

El
ec
tr
ic
al
	 si
gn
al
	 in
	 a
rb
.	 u
ni
ts

Custom	 filtered	 data
Raw	 data

Physics Competitions Vol. 15 No 1 & 2 2013

page 38 / 85

The averaging from four to ten regular values is sufficient.

Sometimes pauses are added in order to get a better distribution of the values. An
extended value range can be helpful when the firmware is caching sensor values.
This can cause some confusion from time to time.

The next algorithm is a custom-made algorithm which tries to cut out values that have
a high fluctuation while having a backup strategy and running out of time. The algo-
rithm should not exceed 50 milliseconds, where the smallest quantity of values in the
calculations is 12.

The choice of a certain smoothing algorithm depends on the context in which you use
the following: (see next page)

int analogSmooth(int sensor){
 int total = 0;

int i;
 for(i = 0; i < 5; i++){
 total += analog_read(sensor);
 }
 return total/5;}

int analogSmooth(int sensor){
 int total = 0;
 int i;
 for(i = 0; i < 5; i++){
 total += analog_read(sensor);
 sleep(10);
 }
 return total/5;}

Physics Competitions Vol. 15 No 1 & 2 2013

page 39 / 85

If values need to be up to date as possible, consider simple algorithms like the mov-
ing average. On the other hand, if you want a value that represents a time period ra-
ther than a particular moment, some more complex algorithms must be implemented.

Conclusion
This publication has shown how complex optimizing programs for low performance
robots can be. Optimizing is necessary to run more complex programs on low end
robots. There are many applications from analysis of sensor values to optimizing ro-
bot algorithms.

Additionally, in this publication value smoothing approaches are compared and dis-
enssed quantitatively. These approaches differ from those that are commonly applied
in robots.

int SmoothVal(int Sensor){
return (ana-

log10(Sensor)+analog10(Sensor)+analog10(Sensor)+analog10(Sensor))>>2;
}

int SmootherVals(int Sensor, int maxJump){
 int count = 0; int target = 2; int val1; int val2; int val3; bool error; int
retrys = 0;
 do{
 retrys += 1;
 error = false;
 val1 = SmoothVal(Sensor); //read a smoothed value
 msleep(2);
 val2 = SmoothVal(Sensor); //read a second smoothed value
 error = distance(val1, val2) > maxJump;
 if(!error){
 int tryCnt = 0;
 while(error && tryCnt < 5){
 tryCnt += 1;
 val3 = SmoothVal(Sensor);
 msleep(1);
 error = distance(val2, val3) > maxJump;
 }
 if(error){
 return (val1 + val2) >> 1;
 }else{
 int abs1 = distance(val1, val2);
 int abs2 = distance(val2, val3);
 int abs3 = distance(val1, val3);

 if(abs1 < abs2 && abs1 < abs3)
 return (val1 + val2) >> 1; // average of val1 and val2
 else if(abs2 < abs3 && abs2 < abs1)
 return (val2 + val3) >> 1; // average of val2 and val3
 else
 return (val1 + val3) >> 1; // average of val1 and val3
 }
 }
 }while(error && retrys < 10);
 if(error) val3=val1;
 return (val1 + val2 + val3) / 3;}

Physics Competitions Vol. 15 No 1 & 2 2013

page 40 / 85

Acknowledgement
We would like to thank our principal, Mrs. Mag. U. Hammel, for the continuous sup-
port, such as providing a robotic laboratory. Furthermore we would like to thank all
our sponsors.

Comments
Amazing Team participated in the Global Conference on Educational Robotics in
Norman/Oklahoma during july 6 to July 10 2012 (GCER13) under the supervision of
Dr. M. Stifter.

The team members won the World championship in the Alliance Challenge. All team
members in alphabetical order: Hovorka Markus, Jung Clemens, Langenau Thomas,
Lütge Philipp, Podest Patrick, and Tiefengraber Bruno [10].

References
(1) V. Georgitzikis, O. Akribopoulos, I. Chatzigiannakis; “Controlling Physical Ob-

jects via the
a. Internet using the Arduino Platform over 802.15.4 Networks,“ Latin America

Transactions,
b. IEEE, vol.10, no.3 (2012).

(2) http://www.botball.org/2013/events/international-botball, September 2013.
(3) http://fulmicoton.com/posts/intersecting_link_list/, Paul Masurel Blog, Septem-

ber 2013.
(4) http://hackaday.com/category/arduino-hacks/, September 2013.
(5) http://hackaday.com/2013/03/13/mailbox-notifier-texts-when-the-letter-carrier-

arrives/,
a. September 2013.

(6) http://hackaday.com/2013/03/19/diy-arduino-pro-mini-quadcopter/, September
2013.

(7) D. Compton; “Application of an Olfactory Data-Preprocessing Algorithm to
Chemotactic
a. Robotic Navigation,“ Journal of Young Investigators, (2008, July).

(8) D. Nardi, “Robot programming, C++ vs Java,“ (2010).
(9) T. Dean, “Building Intelligent Robots,“ (2002).
(10) http://www.robo4you.at/, September 2013.

—

	PhysicsCompetitions_Vol_15_No_1u2_2013_Title
	PhysicsCompetitions_Vol_15_No_1u2_2013_texts

