
fl0w - a development environment for the
KIPR Wallaby

Philip Trauner, Christoph Heiss, Sebastian Schaffler, Nico Kratky, Nico Leidenfrost, Christine Zeh, Sascha Zemann
Department for Computer Science

Secondary Technical College
Wiener Neustadt, Austria

Email: philip.trauner@arztpraxis.io, me@christoph-heiss.me, se.schaffler@gmail.com,
nico@nicokratky.me, leidenfrost.nico@gmail.com, zeh.chrisi@gmail.com, sascha.zemann@gmail.com

Abstract—This publication introduces fl0w, an alternative de-
velopment environment and monitoring solution for the KIPR
Wallaby. The aim of fl0w is to improve the Botball program
development experience. It focuses on the components that make
up fl0w, namely a file synchronization protocol that maintains a
consistent state across all connected controllers, a route based and
data type preserving network protocol with peer-to-peer piping
capabilities, a discovery protocol that connects all controllers
together automatically, a Sublime Text 3 plugin which enables
in-line sensor readouts, program execution, program editing, and
keyboard shortcuts, and a browser-based management front-end
to manage the controller fleet.

Index Terms—file synchronization, networking, LAN discovery,
development environment, monitoring

I. INTRODUCTION

fl0w [1] was developed out of the need for a fast, reliable and
wireless workflow solution that can compete with the currently
available offerings like Harrogate [2]. Its goals are to transform
the connected controllers into a redundant fleet of logical units
that share the same binaries and source code, real-time in-line
sensor readouts, programming as well as robot management
inside Sublime Text 3 [3], and a browser-based front-end.

II. IMPLEMENTATION

fl0w is the combination of all its components split into
Wallaby [4] client and server. All components emphasize shared
code and are therefor written in Python [5] 3.3.6 to remain
compatible with the Sublime Text 3 plugin environment.
Python was chosen as the implementation language for fl0w
because of its rich standard library and its lightweight virtual
machine that can run on a Wallaby controller with acceptable
speed. A pre-compiled version of Python is bundled with the
fl0w installer, r0adrunner, because it is not present on the
Wallaby by default.
All fl0w components are designed as libraries to allow for
integration into other projects. fl0w utilizes a client-server
networking model with random server assignment. Client-server
was chosen because the server can act as a data source for all
clients and logic can be clearly separated.

III. COMPONENTS

A. undergr0und
undergr0und [6] is an asynchronous, route based, and data

type preserving network protocol with peer-to-peer piping
capabilities. It automatically converts data into a transferable
format and prepends binary headers to allow for reconstruction
on the other end.

TABLE I
THE BINARY ENCODING OF MESSAGES IN UNDERGR0UND (IN BYTES)

Data type Route ID Data
1 2 *

The Python version is built on top of a fork of ws4py [7]
and the JavaScript [8] version utilizes regular WebSockets [9]
in arraybuffer mode. It was created because the requirements
for fl0ws network protocol specification changed constantly
and a dynamic approach to networking was required. Instead
of one monolithic network protocol, undergr0und emphasizes
small sub protocols. undergr0und manages itself through
its own concepts by transmitting the initial handshake and
metadata on a route.

1) undergr0und.js: undergr0und.js [10] is the feature
complete client-side JavaScript port of undergr0und that was
required for dashb0ard [11], the browser-based front-end
for fl0w. It utilizes node-jspack [12] to unpack the binary
messages it receives from the undergr0und server. It is based
on the Python version but does not implement the server
because there is currently no need for that functionality.
undergr0und.js can be used in Node.js [13] as well as browsers
that support WebSockets. browserify [14] is used to create the
browser version.

2) Exchange table: To reduce the required additional
bandwidth per message that is introduced with variable
character count routes, a numbered route lookup table is
generated on startup by clients and the server. Before any
communication takes place these lookup tables are exchanged.
Route ID 0 is reserved for self management purposes.



>>> routes = {"echo": Echo(),
... "help": Help()}
>>> create exchange map(routes)
{0: "meta", 1: "echo", 2: "help" }

Fig. 1. Creation of exchange maps used to lower bandwidth requirements

3) Connection constructs:
a) Route: A client→ server / server→ client construct.

Invoked with the ”send” call.
b) Pipe: A client→ server→ client construct. Invoked

with the ”pipe” call.
Clients can be targeted with unique IDs that are generated
randomly for all connected peers by the server. There is no
predefined mechanism in the network protocol that exposed
these peer IDs, the application using undergr0und has to
provide a way of making them available. This approach allows
for more flexibility if additional peer-metadata has to be
provided.
Pipe messages are packaged inside regular route messages
with additional headers in the data segment. A server route
called ”pipe” unpacks the regular and the extended headers
and forwards the message to the targeted peer. The original
sender ID is always included for a possible response.

4) Data type preservation: The original type of the data
segment is present inside the header (see Table I) to accurately
reconstruct sent data on the other end. JSON [15] is used to
transfer lists and dictionaries, and regular UTF-8 encoded
strings are utilized to transfer integers, floats, null/none types
and strings.

B. behem0th

behem0th [16] is a continuous network file synchronization
protocol developed out of the need for an embeddable solution
that would not require an additional background program to
be present on the system running Sublime Text 3, instead
utilizing its plugin environment.
It uses a client-server networking model without peer-to-peer
capabilities to stay in line with undergr0und. It uses regular
sockets instead of WebSockets because the in-browser
components of fl0w never interacts with it. The file-system is
monitored using the watchdog [17] library.

1) Synchronization: On startup, behem0th synchronizes
files based on their last modification time and MD5 hash.
After that, files get synchronized to other clients as soon as
a file-system event happens. Synchronization conflicts are
resolved on the server and it is possible to use behem0th with
a theoretically indefinite amount of clients.

2) Transfer: behem0th neither sends nor receives files as a
whole, instead it transmits the file as small blocks (4096 bytes),
which are written to a temporary file on disk as soon as they
are received. This is done to allow the transfer of large files

even in very random-access-memory-constrained environments.

3) Protocol: behem0th is independent from undergr0und
and defines its own network protocol. It is completely text-
based, uses UTF-8 for character encoding and JSON as format
encoding. behem0th is designed around ’requests’ (see Figure
2) and ’routes’. Each request is a JSON-formatted string and
separated by a newline.

{
"route": "<route−name>",
"data": "<route−specific data>"

}

Fig. 2. behem0th request encoding in JSON

A route can also send additional data if needed (a ’payload’).
For binary data, base64 [18] encoding is used. After each
payload, there is a newline to delimit the payload and the next
request.

4) Security concerns: Although MD5 is deprecated and
known to suffer from extensive vulnerabilities, behem0th is
designed to only run in a local network, which is controlled
by the users of fl0w This assumption also simplifies the
implementation greatly.

C. dashb0ard

dashb0ard [11] is a single-page web application designed to
manage the fl0w fleet.
It can be used to configure connected controllers and obtain
sensor readouts as well as debug logs.
It utilizes undergr0und.js to retrieve data from fl0w, Vue.js [19]
for its user interface, Bootstrap 3 [20] as a design baseline, Flot
[21] to display graphs and jQuery [22] for additional DOM
manipulation.

Fig. 3. The control and configuration page of dashb0ard



Fig. 4. The sensor readout page of dashb0ard

D. edit0r

edit0r [23] is the Sublime Text 3 plugin. It is modeled as a
fl0w client and allows for remote robot management, source
code synchronization as well as in-line sensor readouts.
It also provides quick access to dashb0ard, which is required
because the IP addresses of controllers are not always static.
behem0th is embedded into edit0r and enables the source
code synchronization. In its current form only C programs are
supported because the folder structure for Python programs in
Harrogate is different.

1) Robot selection: fl0ws networking model allows for
the management of multiple controllers without a direct
connection to them. The controller hostname is utilized to
identify the robots in the user-interface. Controllers can be
selected to obtain additional functionality such as in-line
sensor readouts and keyboard shortcuts.

Fig. 5. edit0rs robot management interface in Sublime Text 3

2) Robot management: Botball programs can be started
and/or stopped. Additionally, edit0r allows for modification of
the controller hostname, playback of a sound for identification
purposes, listing of running processes, and power management
functionality (reboot, shutdown).

3) In-line sensor readouts: Invocations of the functions
”analog” and ”digital”, functions typically used to obtain sensor
values, are located every time the content of a view changes
and the parameters of the calls are grouped across views.
edit0r subscribes to all required sensor ports by requesting
them from the currently selected controller. The controller
keeps track of all subscriptions to sensors and continuously
transmits the appropriate values to the Sublime Text 3 plugin.
Sublime Text 3 phantoms, which are in-line fields to display
data within a text view, are created as soon as new sensor
values are available. This approach has the disadvantage of
higher than usual processor utilization by edit0r, because
phantoms were primarily designed to display infrequently
updating content. To partially circumvent this, sensor readouts
can be disabled and are not enabled by default.
In-line sensor readouts can be toggled on a per view basis
with a keyboard shortcut.

Fig. 6. edit0rs inline sensor-readouts in Sublime Text 3

E. r0adrunner

r0adrunner is the installer of fl0w.
It is built to mimic a Wallaby controller software update to
remain compatible with the preexisting update functionality
found in Harrogate. It is implemented in Python 2.7, which
is already installed on all Wallaby controllers. A full-fledged
precompiled version of Python 3.6.0 is installed by r0adrunner
because fl0w utilizes features of Python 3.3.6.
It also changes the Wallaby hostname to their unique manufac-
turing ID because fl0w uses hostnames to represent controllers
in its user facing components. r0adrunner is distributed as an
archive that has to be copied to an USB storage medium.

F. disc0very

disc0very [24] is the LAN discovery protocol of fl0w. It
relies on UDP [25] broadcasts to coordinate server and client
assignment. Wallaby controller instances as well as the Sublime
Text 3 plugin edit0r make use of it to determine if there is
already an active fl0w server on the network upon startup
without user interaction.



1) Discovery process: Upon launch disc0very listens for
advertisements from an already running fl0w server. If an
advertisement is received the client-mode is engaged and a
connection to the server is established. If no advertisement has
been received after 2s server-mode is engaged.

{
"address": "<address>",
"port": "<port>"

}

Fig. 7. disc0very advertisement encoding in JSON

2) Error recovery: disc0very actively listens for advertise-
ments in server-mode to prevent more than one running server
on the network. If a server receives an advertisement from
another server both shut down, wait for a random amount of
time (between 1 and 5 seconds), and return to discovery mode.

G. fl0w

fl0w itself is the combination of all other components split
into Wallaby client and server.

1) Wallaby client: The Wallaby client serves as an
information source for sensor values, program output, as well
as currently running processes. Additionally it exposes its own
standard output for monitoring purposes.

2) Server: The server keeps track of all clients and
provides means to acquire their peer IDs, which are used
by undergr0und to target specific clients. Additionally it
serves dashb0ard and handles program compilation. It utilizes
undergr0und for networking, behem0th for file-synchronization,
and disc0very to determine if another server is already running
in the network.
In that situation the start is interrupted, the Wallaby client
is started and it connects to the available server instance,
otherwise server and client are started.

IV. CONCLUSION

After prolonged testing it was deemed reasonable to claim
that fl0w can improve the Botball development work-flow
on Wallaby controllers. Experienced Botball teams that would
rather program in native tools than the browser-based Harrogate
and want to observe their sensor-readouts in realtime can benefit
from fl0w.

Networking boilerplate code can be cut down drastically
with a fitting networking solution already in place.

Security was never a design goal, instead relying on
network interface level security was chosen to save time. This
assumption will cause problems in densely populated wireless
networks.

There is a high amount of complexity involved when per-
forming continuous file-synchronization with an undetermined

amount of clients across multiple operating-systems and file-
systems.

Support for Python as a robot programming language as
well as basic remote procedure call functionality is the next
development goal.

ACKNOWLEDGMENT

The authors would like to thank Dr. Michael Stifter for
making the existence of our robotics team possible, Daniel
Maximilian Swoboda for answering all paper related questions,
and the KIPR development team without whom the Wallaby
Controller would not exist.

REFERENCES

[1] Philip Trauner, Christoph Heiss, Sebastian Schaffler, fl0w, https://github.
com/robot0nfire/fl0w, source code, accessed February 9th 2017

[2] KIPR, Harrogate, https://github.com/kipr/harrogate,
source code, accessed February 9th 2017

[3] Sublime HQ, Sublime Text 3, https://www.sublimetext.com/3,
product page, accessed February 9th 2017

[4] KIPR, Wallaby Controller,
http://botballstore.org/product/wallaby-controller, store page, accessed
February 9th 2017

[5] Python Foundation, Python, https://www.python.org,
project page, accessed February 9th 2017

[6] Philip Trauner, undergr0und, https://github.com/robot0nfire/fl0w/wiki/
undergr0und, implementation notes, accessed February 9th 2017

[7] Philip Trauner, ws4py, https://github.com/robot0nfire/ws4py,
source code, accessed February 9th 2017

[8] Ecma International, ECMAScript,
https://www.ecma-international.org/ecma-262/7.0/index.html, language
specification, accessed February 12th 2017

[9] A. Melnikov, The WebSocket Protocol, https://tools.ietf.org/html/rfc6455,
request for comment, accessed February 9th 2017

[10] Philip Trauner, undergr0und,
https://github.com/robot0nfire/undergr0und.js, source code,
accessed February 9th 2017

[11] Sebastian Schaffler, Philip Trauner, dashb0ard, https://github.com/
robot0nfire/dashb0ard, source code, accessed March 16th 2017

[12] Peter Griess, node-jspack, https://github.com/pgriess/node-jspack,
source code, accessed February 9th 2017

[13] Node.js Foundation, Node.js, https://nodejs.org,
product page, accessed February 9th 2017

[14] James Halliday, browserify, http://browserify.org/,
product page, accessed February 9th 2017

[15] T. Bray, Ed., JSON, https://tools.ietf.org/html/rfc7159,
request for comment, accessed February 9th 2017

[16] Christoph Heiss, behem0th, https://github.com/robot0nfire/behem0th,
source code, accessed February 9th 2017

[17] Yesudeep Mangalapilly, watchdog, https://github.com/gorakhargosh/
watchdog, source code, accessed February 9th 2017

[18] S. Josefsson, Base64, https://tools.ietf.org/html/rfc4648,
request for comment, accessed March 22nd 2017

[19] Evan You, Vue.js, https://vuejs.org/,
product page, accessed March 16th 2017

[20] Twitter, Inc., Bootstrap 3, http://getbootstrap.com,
product page, accessed March 16th 2017

[21] David Schnur, Flot, https://github.com/flot/flot,
source code, accessed February 9th 2017

[22] jQuery Foundation, jQuery, https://jquery.com/,
product page, accessed February 9th 2017

[23] Philip Trauner, edit0r, https://github.com/robot0nfire/fl0w/tree/master/
Sublime/fl0w, source code, accessed February 9th 2017

[24] Christoph Heiss, disc0very, https://github.com/robot0nfire/fl0w/blob/
master/Shared/Disc0very.py, source code, accessed March 30th 2017

[25] J. Postel, UDP, https://www.ietf.org/rfc/rfc768.txt,
request for comment, accessed March 30th 2017


