
HTBLuVA Wiener Neustadt
Federal Higher Technical Institute for Education and

Experimentation for Computer Science

D IP LO MA RB E IT

BreakdownDrone

2016/17 von:
Image processing
Fabian PIRIBAUER 5AHIF

Programming of the drone
Florian UNGERSBOECK 5AHIF

Betreuer / Betreuerin:
MMag. Dr. Michael Stifter

Wiener Neustadt, am 3rd April, 2017

Abgabevermerk:

Übernommen von:

Contents

Diplomarbeit Dokumentation iv

Diploma Thesis Documentation vi

1 Introduction 1
1.1 Overview (Florian) . 1
1.2 Goal (Florian) . 1
1.3 Definition (Florian) . 1
1.4 History (Florian) . 2
1.5 Commercial use of Drones (Fabian) . 2
1.6 Legal Position (Florian) . 3
1.7 Related Work (Fabian) . 4
1.8 Social Aspect (Florian) . 4

2 Hardware (Florian) 6
2.1 Drone . 6

2.1.1 Autopilot System . 7
2.1.2 GPS Module . 7
2.1.3 Telemetry Module . 7
2.1.4 Motors . 8
2.1.5 Battery Pack . 8

2.2 Custom Build Control Module . 9
2.2.1 Raspberry Pi 3 . 9
2.2.2 PiCam . 10
2.2.3 Motor to Release the Triangle . 10

2.3 Breakdown Triangle . 10
2.3.1 Release Mechanism . 12

2.4 Communication between Drone and Raspberry 12
2.4.1 Architecture . 12
2.4.2 Host Controller . 13

2.5 Alternative Hardware . 13
2.5.1 Drone . 13
2.5.2 Raspberry Pi . 14

3 Software (Fabian) 15
3.1 Programming Language . 15

3.1.1 Background . 15
3.1.2 Why Python2.7? . 15

3.2 MAVLink (Florian) . 15

i

Contents ii

3.2.1 Message System . 16
3.3 DroneKit (Florian) . 16

3.3.1 API Features . 17
3.3.2 Connection to a Vehicle . 17
3.3.3 Vehicle Modes . 17
3.3.4 Vehicle Attributes . 18
3.3.5 Vehicle Movement . 18

3.4 Communication . 20
3.5 Camera Stream . 20

4 Navigation (Fabian) 21
4.1 Global Positioning System (Fabian) . 21

4.1.1 Calculating the Distance between two GPS Coordinates 21
4.1.2 Offsetting a GPS Coordinate . 22

4.2 Usage of Map Data . 23
4.2.1 OpenStreetMap . 23
4.2.2 Reverse Geocoding . 24

5 Computer Vision (Fabian) 26
5.1 Misconception of Computer Vision . 26
5.2 OpenCV . 26
5.3 Image Data Format . 27
5.4 Smoothing . 27

5.4.1 How does Smoothing Work? . 27
5.4.2 Convolution Matrix . 28
5.4.3 Mean Filter . 28
5.4.4 Gaussian Blur . 28
5.4.5 Implementation in OpenCV . 29

5.5 Edge Detection . 29
5.5.1 Canny Edge Detector: . 29
5.5.2 Implementation in OpenCV . 31

5.6 Line Detection . 32
5.6.1 Hough Line Transform . 32
5.6.2 Implementation in OpenCV . 32

5.7 Relative Position to Landmarking . 34
5.7.1 Angle Calculation . 34

5.8 Distance Estimation . 35
5.8.1 Camera and Focal Length . 35
5.8.2 Field of View Calculation . 35
5.8.3 Convert Pixels to Actual Meters . 36
5.8.4 Get Shortest Distance in Pixels . 37

6 Flight(Florian) 38
6.1 Autonomous vs. Manual Mission . 38
6.2 Pre-Flight . 38
6.3 Takeoff . 38
6.4 Flying the Path . 39

6.4.1 Heading for a Node . 39
6.4.2 Calculating the Distance to a Node 39

6.5 Landing and Steering . 40

Contents iii

6.6 Releasing the Breakdown Triangle . 41
6.7 Way back to the Starting Point . 42
6.8 Performance Analysis . 43

6.8.1 Why Performance Analysis? . 43
6.8.2 Different Methods of Analysis . 43
6.8.3 Tested Device . 44
6.8.4 Indicators Analyzed . 44
6.8.5 Performance during Flight . 45
6.8.6 Discussion of Results . 45
6.8.7 Methods of increasing Performance 45

7 Conclusion 47
7.1 What was Planned? . 47
7.2 Benchmarking . 47

7.2.1 Flight Accuracy . 47
7.2.2 Landing Accuracy . 47

7.3 Testing . 48
7.3.1 Testing of Flight Accuracy . 48
7.3.2 Testing of the Landing Accuracy . 48

7.4 Results . 49
7.5 Further Development . 49

7.5.1 Obstacle Avoidance . 49
7.5.2 Hardware Upgrade . 50
7.5.3 Triangle . 50

Acronyms 51

Bibliography 52

Fachrichtung: Informatik
Ausbildungsschwerpunkt: Maschineningenieurwesen

Name 1 Dieses PDF ausfüllen und als PDF drucken.
Name 2 Das gedruckte PDF in den Ordner pdf
Name 3 speichern.
Name 4
Name 5

5AHIF

2015 / 16

Entwurf eines Versuchstandes für Kreiselpumpen

Irgendeine Firma wenn vorhanden

Hier
steht
die
Aufgabenstellung
in
einigen
Sätzen.

Beschreibung
der
Realisierung.

Beschreibung
der
Ergebnisse.

iv

Fachrichtung: Informatik
Ausbildungsschwerpunkt: Maschineningenieurwesen

Beschreibung des unten eingefügten Bildes. Unten
klicken um das Bild zu wählen. Das Bild muss als
PDF vorliegen (z.B. mit GIMP als PDF speichern).

1. Preis in Irgendeinem Wettbewerb

AV Mag. Max MustermannMag. Max Mustermann

v

Department: Informatik
Educational Focus: Maschineningenieurwesen

Name 1
Name 2
Name 3
Name 4
Name 5

5AHIF

2015 / 16

Titel englisch

Irgendeine Firma wenn vorhanden

Hier
steht
die
Aufgabenstellung
in englisch in
einigen
Sätzen.

Beschreibung
der
Realisierung auf englisch.

Beschreibung
der
Ergebnisse auf englisch.

vi

Department: Informatik
Educational Focus: Maschineningenieurwesen

Englische Beschreibung des unten eingefügten
Bildes. Unten klicken um das Bild zu wählen.

1. Preis in Irgendeinem Wettbewerb

AV Mag. Max MustermannMag. Max Mustermann

vii

Abstract

The rapid growth of automobiles has lead to an increasing amount of breakdowns and
unfortunately brings its death toll with it. The amount of resulting secondary accidents
must not be ignored. The BreakdownDrone is an thesis about whether it is feasible to use
unmanned aerial vehicles in order to make those slightly less likely by fully autonomously
placing a breakdown triangle. A quadcopter is used for the mission and is supported by a
companion computer, a Raspberry Pi. For finding the flight path, the Raspberry is equipped
with a Pi Camera Module v2 which is used in conjunction with the Open Computer Vision
library. By applying a number of filter, edge detection and line detection algorithms it
is possible to extract the road markings from the camera image and determine angle, as
well as the distance to the line. Furthermore the precision of the vehicle’s GPS stabilized
navigation system is called into question.

viii

Kurzfassung

ix

Chapter 1

Introduction

1.1 Overview (Florian)

During the last 100 years the usage of cars, trucks and motorcycles has grown very rapidly.
With an increasing amount of vehicles on the streets results in more accidents. This is why
there were many approaches in order to protect people involved in an accident. One of
them is the breakdown triangle. The problem with the breakdown triangle is that not only
it is very dangerous to set it up while the traffic is flowing fluently, but also the distance
between the vehicle and the triangle has to be correct to make sure everyone is able to
recognize a dangerous situation in time.

1.2 Goal (Florian)

The drone is supposed to deploy a breakdown triangle autonomously by flying along the
roadside, as soon as the source distance between the drone and the crashed vehicle is long
enough the breakdown triangle gets put down in the correct orientation to the street near
the edge of the road.

1.3 Definition (Florian)

A drone is what most people call an Unmanned Areal Vehicle (UAV) in their everyday
language [1]. It flies without a pilot on board of the vehicle. It can either be controlled by
a pilot using a remote control or the drone flies autonomously (controlled by an onboard
computer) which means it can fly without any interaction between a human and the aircraft
[2].

UAVs can vary greatly for example in its size and the number of motors/propellers
attached, but in commercial use the most common vehicle is a quadcopter. Four propellers
are attached to motors which are driven by the flight controller, the heart of every drone.
The flight controller uses a Global Positioning System (GPS) module to maintain a stable
flight. In a remote controlled mission a telemetry is required in order to transmit collected
data to the controller, so the pilot can determine what state the vehicle currently is in.
Additionally the telemetry receives the control instructions from the pilot via the remote
control and forwards commands to the flight controller.[3] During an autonomous mission
the drone moves by commands from a running program on the flight controller or even an
external controller attached to the UAV.

1

1. Introduction 2

1.4 History (Florian)

One of the first unmanned air raids happened in August 22, 1849 where Austrians, who
already possessed parts of Italy, attacked Venice. The Austrians launched about 200 bal-
loons with explosives attached to them. Some of the bombs exploded like planned (by a
timed fuse) but some actually got blown back over the Austrian border because the wind
suddenly changed [4].

The interest in Unmanned Areal Vehicles for military use has grown since the bumbling
Austrian experiment. During World War 1 Archibald Montgomery Low invented the first
remote controlled aircraft [5]. The US military had great hope in Unmanned Areal System
(UAS) and developed the Hewitt-Sperry Automatic Airplane. When the first world war
ended in 1918 the development of UAVs was paused, but in 1935 the English film and
television actor Reginald Denny became interested in radio controlled model airplanes and
opened a model plane shop. [6]

During the Second World War the Nazi German Luftwaffe developed and used various
UAVs, one of them being the so called flying bomb V1 (Vergeltungswaffe 1). It was a radio
controlled bomb with about 1 ton of explosives on board, mostly used to attack London
and Belgium in 1944 [7]. After World War II jet engines were developed and used for drones
by the Australian Government Aircraft Factories [8].

The US Air Force started their UAV program (today known as “Red Wagon”) after
the Soviet Union shot down one of their U-2 spy planes during the cold war in 1960 [9].
During the War of Attrition (1967-1970) in the Middle East Egyptians first used a drone
with a camera attached to it to gain awareness about the enemy movements. Just three
years later the US military confirmed their usage of drones during the Vietnam war [10]
in order to not unnecessarily lose more pilots during high risk reconnaissance missions.
Israels military developed a drone with great success during the 1982 Lebanon War. Israel
managed to take down all Syrian air defense without the loss of a single pilot [11]. During
the 1980s and 1990s drones became increasingly more significant for the US military.

The European Union started a project in 2002 called “CAPECON”. Its objective was
to advance UAV technology in military and commercial use, thus improving reliability,
safety and performance. The project was set aside in 2005 [12]. Until 2012 the US Airforce
deployed almost 7500 drones which is 30% of all US aircrafts [13].

Recent drones also became increasingly more important in commercial use. Big com-
panies are planning to use them for their daily business. One example is Amazon Prime
Air, where Amazon tries to deliver their orders within 30 minutes or less [14].

1.5 Commercial use of Drones (Fabian)

Although drones have been around for much longer, only in the last few years the open
market picked up on them. As the technology advances, building a business out of drones
becomes much more imaginable. Also, with change of the law in favor of commercial UAVs
entrepreneurs are more tempted towards using them. The federal government of the United
States of America has already made it easier to get a certificate for commercial missions,
trying to shift companies to the new trend[15]. Some may argue that this will lead to
a dramatic loss of privacy, since almost every drone uses a camera for collision detection
reasons, but also for data collection. But there are some great uses for UAVs in the industry.

Possible Usages of Drones

1. Introduction 3

Object Delivery: Since drones are so flexible, it’s just a matter of time when they
will be used to transport small objects like letter from A to B. The company Amazon has
announced to use drones in the near future to deliver packages [14]. The only problem is
that the current ‘sense and avoid‘ technology is not sophisticated enough to ensure the
safety of the those near the UAV and therefore it is still in development.

Agriculture: One noticeable advantage of drones is their capability of creating maps
of huge areas with little effort. They are faster and cheaper than other solutions like
helicopters or satellite imagery. Using a near infrared camera you can render a map which
displays the vegetation index of the crops [16]. This could help a farmer to quickly discover
droughts or comparing fields that were differently fertilized.

Photography: Drones give professional photographers a whole new perspective that
can be used. It’s easier to make pictures of a large amount of people for example at a
wedding.

Media: As with photography, the media would be able to replace expensive news
helicopters with small drones providing a live media feed.

Mining: Drones can be used to generate height maps and 3D models of quarries.
Those models can be used to calculate the volume of certain piles which usually needs a
few work hours of estimating the volume.

Safety and Security: Drones are already used in the military for border control and
various other tasks. Shouldn’t we consider better applications to improve our overall safety?
This is what this thesis is about. We try to find dangerous tasks that pose no problems to
drones and let them do it instead. In our case it’s to safely position a breakdown triangle.
An even more life critical mission would be to find avalanche-buried people. But there is
certainly more which drones can be used for, especially for emergency services.

1.6 Legal Position (Florian)

In many countries like Austria the flight of unregistered drones is prohibited outdoors. The
organization “AustroControll “ allows the usage of drones in public areas. There are a few
classifications which are differentiated in Austria.

class one (within visual contact)

These kind of UAVs, with a maximum of 150kg, are only allowed to fly within
visual contact and a maximum height of 150 meters. The drone has to be
marked accordingly. Operators of the vehicle gets an approval after a technical
and operational examination.

class two (without visual contact)

A drone pilot of a class two vehicle does not have to have sight contact with
the drone but the permission for flying the drone is the same as the allowance
of civil aviations. The Pilot’s license is also required.

1. Introduction 4

In general class one vehicle gets classified by their danger which potential means they
get differentiated by their weight and their field of usage.

field of usage
I: untilled II: unsettled III: settled IV: densely settled

mass with max.
5kg A A B C

mass with max.
25kg A B C D

mass with max.
150kg B C D D

In order to get the class A approval needed for the Breakdown Drone following docu-
ments need to be sent to AustroControll:

• detailed description of the UAV
• declaration of reliability
• certificate of insurance
• photographic identification of the pilot

Additional requirements needed for class B approval are:

• proof that the drone matches the building regulations
• noise report
• operational safety analysis
• declaration of qualification of the pilot(s)

For type C and D, in addition to all of the points mentioned before:

• pilots license and a confirmation of medical fitness
• confirmation of knowledge of air traffic law

1.7 Related Work (Fabian)

In the last couple of years research about UAVs became increasingly more popular. Besides
military and commercial use, there have been some studies which focus on civil applications,
like traffic control or search and rescue missions. In [17] a multipurpose UAV has been
built for search and rescue operations in the event of a avalanche. Like this study, where
prevention of follow up accidents is the main goal, such technology can save lives and it’s
vitally important to encourage this kind of research.

1.8 Social Aspect (Florian)

A drone flying above our heads could mean anything. It could mean it is from a news
channel making a new documentation about our wildlife, but it could as well be a drone
used to monitor a specific citizen. This uncertainty is what makes most people very skeptical
about commercially used drones especially the older generations.
Various UAVs can be used and are partly already used for very dangerous missions like

1. Introduction 5

taking a look around and inside a contaminated atomic power plant. Natural catastrophes
for example would be another occasion where the usage of drones shows their big advantages
over humans or other ground machines. They are very accurate, easy to use and above all
that they are very fast when it really counts. Imagine someone is partially trapped under
a house after a big earthquake, where search groups could take days and perhaps even
weeks to find someone, drones would only take a few minutes for finding someone and
then reporting the exact location of the trapped person back to the search group. Other
positive usages could be delivering important medicine to people needing them fast, like
hikers being bit by a venomous animal that need antidotes before it is too late. These are
just a few things mentioned that can really help society.
On the other hand there are always gonna be people that use such technologies for illegal
activities. No one wants to be observed at any given time, especially if you do not even
know for sure and just live with the guess of getting looked at right now. Without knowing
for sure what this specific drone is doing flying right over peoples heads, everyone will
certainly be skeptic. On the other hand it can be a key moment in a police investigation
when searching for an criminal. This uncertainty is what makes this huge controversy
around this subject.
Another motive is the military use of drones in modern times. Can a soldier ethnically
agree to potentially kill hundreds of humans by remotely flying a drone and dropping off
a bomb? This can be a huge ethical issue even if it can mean saving thousands of people.

Chapter 2

Hardware (Florian)

2.1 Drone

The drone itself is a commercial drone called the 3DR Iris+. It is put together by the many
parts listed here. A drone or basically any UAV system is able to roll around three axis in

Figure 2.1: In this figure the 3DR Iris+ is shown with custom made breakdown triangle
on a custom made control module attached to the main frame of the drone.

a 3 dimensional room. In a plot the three axis can be described as x, y and z axis. The
positional control of a UAV system is usually converted to pitch, yaw and roll which are
described in radians. Small UAVs usually have two control mechanisms: remote control (or
radio control) and autopilot control mode. Controlling a drone via remote control means
a human pilot sending radio signals through a remote control by changing the states of
several throttles. Whereas autopilot means the flight controller of a UAV can keep the
vehicle in a desired state, for example some kind of automatic positioning system [18].
Hence the Breakdown drone only flies by autopilot the remote controlled option will not
be described any further.

6

2. Hardware (Florian) 7

2.1.1 Autopilot System

An autopilot consists of hardware and software to be able to guide a UAV. Its main purpose
is to pilot the UAV during take-off, trajectory following and landing. The autopilot is a
key component in the flight control system, because it has to communicate with a ground
station (in the Breakdown Drone case the Raspberry Pi 3) which is responsible for telling
the autopilot which mode to use. At the same time it receives broadcasts from the GPS
satellites for position determination and therefore it sends control signals to all motors
(and servos in a aircraft UAV system) [18]. The Pixhawk is a autopilot not only designed
for quadcopters but also for helicopters, cars, boats or any other autonomous vehicle.

It is build by 3D Robotics (3DR) and developed as an open-source project by many
engineers around the globe. Following build-in modules get the whole system running:

• Processor

– 32-bit ARM Cortex M4 core with FPU
– 168 MHz/256 KB RAM/2 MB Flash
– 32-bit failsafe co-processor

• Sensors

– MPU6000 as main accel and gyro
– ST Micro 16-bit gyroscope
– ST Micro 14-bit accelerometer/compass (magnetometer)
– MEAS barometer

2.1.2 GPS Module

The so called GPS-BR-0008 module allows the flight controller to connect to the GPS
satellites for precise navigation outdoors. It is connected directly to the Pixhawk controller.

GPS is a constellation of 27 satellites (24 of them operating and 3 in case one fails)
that send radio signals that receivers can capture. Initially GPS was developed as a way
of navigation for and from the US military, but soon they decided to make it available for
everyone. Every single one of these 760 kg heavy satellites circles our planet at about a
height of 20200 km. Their orbits are arranged in a way so that at any given time everywhere
on earth there are at least 4 satellites in reach. The GPS modules job is it to get a connection
to at least four of these satellites and measure the distance to each one of these. Now it
is possible to determine a exact location using the mathematical method of trilateration
[19]. To simplify trilateration a little bit one can look at a two dimensional projection of
the earth as in figure 2.3 on the left. However with only three satellites a receiver can only
calculate the position of itself, which is exactly at the point of intersection of the three
radians from the satellites. With a fourth satellite it is possible to determine the height of
the receiver as well. Adding additional satellites to the system allows a much more accurate
determination of location.

2.1.3 Telemetry Module

The 433MHz Telemetry module is used for wireless data exchange between the aircraft and
any ground controller. A ground controller can either be the remote control or any PC or
Android Phone/Tablet.

2. Hardware (Florian) 8

Figure 2.2: In this figure the main I/O ports of the Pixhawk autopilot is shown.

2.1.4 Motors

Standard motors for the Iris+ are the T-Motor MN2213. These allow the drone to carry an
extra weigh of about 500 g. With a left-hand threaded attachment on two of the four motors
and a right-hand threaded attachment on the other two motors it allows the propellers to
self-tighten.

2.1.5 Battery Pack

Mainly used for power supply is the iris+ battery pack. It is a lithium polymer battery
with a capacity of 5100 mAh. This capacity allows the drone to fly for up to 20 minutes

2. Hardware (Florian) 9

Figure 2.3: This two dimensional figure shows how three satellites are required be able to
tell the exact location of a device which is represented by the intersection fo the three radii.

with one charge. The XT60 connector transmits the power to the flight controller and the
motors.

2.2 Custom Build Control Module

The control module contains all the important parts to actually deliver and put down the
breakdown triangle to its target location.

2.2.1 Raspberry Pi 3

The Raspberry Pi 3 is a one-board computer developed by the Raspberry Pi Foundation.
The most remarkable property about the Pi is its size, because it is only as small as a
credit card, but it has a quad core processor built-in.

A brief hardware overview:

• SoC: Broadcom BCM2837
• CPU: 4x ARM Cortex-A53, 1.2GHz
• GPU: Broadcom VideoCore IV
• RAM: 1GB LPDDR2 (900MHz)
• Networking: 100 Mbit Ethernet, 2.4GHz 802.11n wireless

2. Hardware (Florian) 10

• General-purpose input/output (GPIO): 40-pin header

On the Breakdown Drone, the Pi is the processing unit to relieve the flight controller.
The unit communicates with the flight controller via USB to get all the data it needs to
calculate the approximate path the drone has to take in order to reach its destination. The
Raspberry Pi is connected via serial bus to a camera module used for image processing.
The implemented algorithm are able to detect the end of the street. The main task is to
release the breakdown triangle at the final point, therefore a motor controlled by the Pi is
needed as well The whole system is powered by an 5600 mAh powerbank.

2.2.2 PiCam

The Pi Camera Module v2 is a small and light sensor that is attached to the Raspberry
Pi. It only weighs 3 g and has a still resolution of 8 Megapixels. Additionally to its photo
resolution the camera is capable of producing videos in 1080p30, 720p60 or 640 x 480p60/90.
The sensor has a horizontal field of view of about 62.2 degrees and 48.8 degrees for its
vertical field of view. It has a fixed focal length of 3.04 mm, a focal ratio of 2.0 and is not
able to automatically focus objects. [20]

2.2.3 Motor to Release the Triangle

The 40 GPIO pins on the Model 3 of the Raspberry pi are used, as the name already
indicates for reading input to connected sensors or outputting data to different electrical
parts such as LEDs, motors etc. These 40 pins get divided into two 5V power inputs, two
3.3V power inputs, eight grounded pins and a total of 28 pins used for in- and output.
Some of the IO pins have a special purpose, but are not needed to control a simple DC
motor. To control a DC (direct current) motor a few parts are needed [21].

• The Raspberry Pi itself
• a breadboard
• a motor driver chip like the L293D
• cables to connect everything together
• a DC motor
• and a holder for four AA batteries

The L293D is a motor driver which allows a controlled movement of any DC motor in
both directions (clockwise and counterclockwise). Its IC (integrated circuit) supports 16-
pins and therefore 2 DC motors to be controlled simultaneously. Built-in the L293D is the
concept of a H-bridge which allows a voltage applied to the motor in one direction or the
other. With roughly 20mA being the maximum of power provided by the main processor,
another source of power supply is needed, thats where the batteries come in place. To
actually release the triangle, a SG-5010 Servo is used mainly for its light weight and high
accuracy for its low cost. If all the parts are put together correctly like in Figure 2.4 the
servo can be controlled by a simple python script.

2.3 Breakdown Triangle

The triangle had to be build completely from scratch because commercially available break-
down triangles are not only impractical to attach to the drone but also way too heavy. In

2. Hardware (Florian) 11

Figure 2.4: Assembly of the circuit used to power the motor [21].

the figure above there are several components highlighted:

The reflective area is sticked to a very light weight but stable synthetic material, it
is used to warn drivers who approach the crash scene.

Attached to the reflective triangle is a PVC Pipe. Its purpose is not only to somehow
pin the triangle to the drone but at the same time keep a safe distance from the triangle
to the propellers. On the very top of the PVC Pipe is a loop of wire to fix the whole
construction to the vehicle.

Last but not least the wooden part inside the PVC Pipe. It is stuck through the
bottom of the triangle and glued to the PVC Pipe so neither the triangle nor the wood is
able to wobble around. A nice side effect of this part also is the fact that it is lowering the
center off mass by a lot so when the drone flies away from the spot the triangle gets put
down, the triangle doesn’t move from it intended place. In fact it doesn’t move at all.

This construction has only a weight of about 70 g which is a very significant improve-
ment over a triangle found in a store with a weight of at least 2 kg. While being so light it
also stands heavy winds coming from the drone.

2. Hardware (Florian) 12

Figure 2.5: The self build triangle used for the Breakdown Drone.

2.3.1 Release Mechanism

The release mechanism is a DC motor that holds down the breakdown triangle with a
metal bar exactly at the indentation of the PVC pipe.

2.4 Communication between Drone and Raspberry

The USB (Universal Serial Bus) communication between the Pixhawk controller and the
Raspberry Pi gets controlled by a so called Host-Controller, which in this case is build onto
the board of the Raspberry Pi. Only the host is allowed to read or send data to or from
the other device.

2.4.1 Architecture

The components of a USB host controller seen in figure 2.6:
• Client Driver Software: is a software module used to exchange data between the

operating system and the USB device.
• USB Driver: is a system software Bus Driver that is able to abstract the details of a

particular host controller driver for a specific operating system.
• Host Controller Driver: provides the software layer between the host controller hard-

ware and the USB driver.
• Host Controller: is the specific hardware implementation. One for the Full- (USB 2.0)

and one for the Low-speed (USB 1.1) host controller.
• USB Device: hardware item that performs a specific task for the user.

With two different host controller and their cohesive drivers it is possible to not only allow
the usage of USB 2.0 devices but also the older USB 1.1 standard, therefore USB is able
to fully support backwards compatibility.

2. Hardware (Florian) 13

Figure 2.6: Illustration of a Block diagram in a host system.[22]

2.4.2 Host Controller

Internally the host controller addresses any connected device with a 7 bit long identifier.
Therefore it has a theoretic maximum of 127 devices connected. If there is a new device
detected on a port the controller enables this port and sends the connected device a reset.
Thereby the device gets address 0 and the controller is then able to assign a unique address
to the device.

2.5 Alternative Hardware

2.5.1 Drone

It is possible to completely build a drone from scratch. However a lot of time and effort
will be put into building and programming a self made drone. If someone still decides to
do so he will have to do a lot of research beforehand in order to not miss out on any
of the drones features needed. Some crucial factors are for example the overall weight of
the drone, whether or not the drone will be able to carry enough additional weight if so
desired and last but not least the drones stability during the flight has to be given at any
time. Furthermore if a builder does not intend to program autonomous missions, a way of
controlling the drone will also be required. The main options for steering a UAV are either
by a smartphone app or via remote control.

2. Hardware (Florian) 14

There are also possibilities to buy already assembled drones. The offers of the different
companies vary greatly. One of the most well known companies in commercial drone in-
dustry is dji (Dà-Jiāng Innovations Science and Technology Co.). Their most recent drones
are the so called “mavic pro” and the “phantom 4”. Advantages of these two drones are
their high build quality, very accurate sensors and a very good customer service. But their
disadvantages are not to be ignored either. The dji drones are not fully programmable and
their price is not really low either with a price of 1199€ for the mavic pro and 1699€ for
the phantom 4 (price from the dji online store on February 2017). Dji also released a fully
programmable drone, the so called “Matrice 100” but it is coming in at a price of 3.599€
(price from the dji online store in February 2017). Since the 3DR iris+ came in at a lower
price of xxx€ and is fully open-source it was the obvious choice for the Breakdown Drone
with the only problem being that the iris+ has been discontinued [23].

2.5.2 Raspberry Pi

There are certainly countless other single-boarded computers on the market than the Rasp-
berry Pi series, this section is going to discuss why the Raspberry Pi 3 was used over its
competitors.
The probably most known competitor is the Banana Pi M64. It is roughly the same size
as the Raspberry and has in most parts the same I/O (Input/Output) devices built-in. Its
main differences in terms of specifications are the 2GB of RAM compared to the 1GB of
the Raspberry Pi and the Banana Pi has an internal storage capacity of 8GB. In terms of
I/O ports it is missing some ports like the Cameral Serial Interface (CSI) which means for
the Banana Pi a USB Camera would be necessary, however if a USB camera is used it has
to be taken into consideration that the Banana Pi only has 2 USB ports in total compared
to the 4 ports on the Raspberry Pi [24].
Another very well known option is the Cubieboard 4. It scores with its 2GHz octa core
CPU, 2GB of RAM and 8GB of internal flash storage compared to the specifications of
the Raspberry Pi 3. Just like the Banana Pi the Cubieboard also lacks a CSI on board,
which has to be coped with an USB camera as well. But not only the CSI is missing but
the Cubieboard is also missing GPIO pins entirely, therefore another way of controlling a
motor for the breakdown triangle is needed [25].
On paper all the other options of the Raspberry Pi might seem nice, but what all of them
are missing is the huge community behind the Raspberry Pi. There are numerous people
and open source projects that are able to help a developer developing a new project or
technology. This is the reason the Breakdown Drone uses a Raspberry Pi 3 over all its
competitors.

Chapter 3

Software (Fabian)

3.1 Programming Language

Python2.7 was used as the primary programming language for the entire project. Python is
a multi purpose programming language which has great built-in support for collections. It’s
an interpreted language and is supported on many different platforms (Windows, Linux,
OSX, BSD, Solaris, etc.). With the language being weakly typed and having a lot of
syntactic sugar, it makes the code easier to read and needs generally less code than its
competitors like Java or C++ for the same operation.

3.1.1 Background

Python was created in the year 1989 by Guido van Rossum, who named the programming
language after the British comedian Monty Python. It was originally only a hobby project
that should create a scripting language that could replace the at its time dominant pro-
gramming language, ABC. Due to its dynamic nature it got quite popular and in 2000,
Python 2.0 was released.[26]

Eight years later in 2008 Python 3.0 was released and meant to replace the old 2.x
versions. Since the new major version is not backwards compatible, many programmers
stuck with 2.x. Therefore the 2.x branch was still updated and in 2010 the final version
2.7 was released. Python2.7 is still frequently used and will be officially supported until
2020.[26]

3.1.2 Why Python2.7?

Even with Python3 being released in December 2008 many libraries have never been ported
from 2.x to 3.x, making them incompatible and compelling developers to use the legacy
version in order to have access to essential external modules. With the Dronekit-API being
a KO criterion for this project and it only being available in Python2, using Python3 was
never considerable.

3.2 MAVLink (Florian)

MAVLink (Micro Air Vehicle Communication Protocol) is a header-only message marshal-
ing library for micro air vehicles. It was first released by Lorenz Meier in 2009.

15

3. Software (Fabian) 16

3.2.1 Message System

The MAVLink Protocol is designed to exchange data between a vehicle and a GCS (Ground
Control Station) via a serial communication channel (USB). The Raspberry Pi of the
Breakdown Drone works as a GCS.

Figure 3.1: This figure describes the structure of all MAVLink messages [27].

An example message is sent by the GCS to the UAV. Immediately after the message was
sent the GCS starts a timer. As soon as the UAV gets the message from the GCS it executes
it and responses with an acknowledgement message. The GCS waits for a certain amount
of time for the acknowledgement message to arrive, if it doesn’t within this timespan, the
initial message will be sent again. An autopilot system (like the Pixhawk autopilot) will
take the frame (shown in 3.1) apart and execute its payload. Since the Acknowledgement
package will not have to contain any data it will only have a length of 8 bytes. A normal
packages size can range anywhere from 9 to 263 bytes per package.

3.3 DroneKit (Florian)

DroneKit is a open-source and community driven library that allows developers to be able
to create and run applications on various different so called companion computers. It takes
advantage of a low latency connection (USB) between the companion computer and the

3. Software (Fabian) 17

UAV to enhance the system, by adding greater intelligence to the vehicle or enable the
usage of computationally intensive tasks such as the calculation of the flight path (seen in
chapter 4) or the processing of computer vision (seen in chapter 5). Initially there where
three different methods of developing with the DroneKit API - via Cloud, Java or Python.
However DroneKit-Cloud has been shut down on March 31st, 2016 because the developers
do not have the resources required to further develop their product anymore. DroneKit-
Java is mainly used to be able to develop custom Android applications. The Python API
has found great usability in systems with a second dedicated computer for providing the
vehicle with the flight information it needs. [28]
DroneKit uses the MAVLink Protocol (Micro Air Vehicle Communication Protocol) to
communicate between the companion computer and the drone. (as previously described in
3.2)

3.3.1 API Features

The main features the API is able to provide to a developer are:
• connection from the companion computer to the vehicle.
• the ability to get and set vehicle states/telemetry- and parameter information.
• monitoring of vehicle state changes.
• a way to guide a vehicle to a specified location.
• sending custom messages to control the vehicle movement or other hardware (gimbal).
• create and manage various waypoint missions.
• alternation of RC channel settings.

3.3.2 Connection to a Vehicle

The connect function (seen in listing 3.1) returns a vehicle object that can will further
be used from the companion computer to communicate with the vehicle. Its Parameters
are: ’/dev/ttyACM0’ which describes the serial interface the USB cable is connected to,
wait_ready is set to true so the program freezes until the API has established a safe
connection to the vehicle, and the baud rate describes symbols or pulses get transfered per
second, this information is important so the autopilot system knows at which rate it has
to refresh its input stream in order to receive the data correctly.

Listing 3.1: Code snipped for connecting to a vehicle that is linked via USB cable.
1 vehicle = connect('/dev/ttyACM0', wait_ready=True, baud=57600)

3.3.3 Vehicle Modes

The 3DR Iris+ comes with various different vehicle mode out of the box. The most impor-
tant ones are:

• RTL (return to launch)
• POSHOLD (holds current position)
• LAND
• STABILIZE
• AUTO
• GUIDED
• ALT_HOLD (holds current altitude)

3. Software (Fabian) 18

• BRAKE
• LOITER
• SPORT (enables higher speeds at the loss of altitude)
Every single one of these modes are set- and gettable by calling the vehicles “mode“attribute

(seen in listing 3.2).

Listing 3.2: Sets the vehicles mode to “GUIDED“. This can be exchanged for any of the
other modes mentioned above.

1 #setting the vehicle mode to GUIDED
2 vehicle.mode = VehicleMode("GUIDED")
3 #printing current vehicle mode
4 print vehicle.mode.name

3.3.4 Vehicle Attributes

A lot of the vehicles attributes can be accessed via the vehicle object generated in 3.3.2.

Listing 3.3: Shows the code required to access the most important vehicle attributes.
1 print "Autopilot Firmware version: %s" % vehicle.version
2 print "Autopilot capabilities (supports ftp): %s" % vehicle.capabilities.ftp
3 print "Global Location: %s" % vehicle.location.global_frame
4 print "Global Location (relative altitude): %s" % vehicle.location.

↪→ global_relative_frame
5 print "Local Location: %s" % vehicle.location.local_frame
6 print "Attitude: %s" % vehicle.attitude
7 print "Velocity: %s" % vehicle.velocity
8 print "GPS: %s" % vehicle.gps_0
9 print "Groundspeed: %s" % vehicle.groundspeed

10 print "Airspeed: %s" % vehicle.airspeed
11 print "Gimbal status: %s" % vehicle.gimbal
12 print "Battery: %s" % vehicle.battery
13 print "EKF OK?: %s" % vehicle.ekf_ok
14 print "Last Heartbeat: %s" % vehicle.last_heartbeat
15 print "Rangefinder: %s" % vehicle.rangefinder
16 print "Rangefinder distance: %s" % vehicle.rangefinder.distance
17 print "Rangefinder voltage: %s" % vehicle.rangefinder.voltage
18 print "Heading: %s" % vehicle.heading
19 print "Is Armable?: %s" % vehicle.is_armable
20 print "System status: %s" % vehicle.system_status.state
21 print "Mode: %s" % vehicle.mode.name # settable
22 print "Armed: %s" % vehicle.armed # settable

3.3.5 Vehicle Movement

The probably most important part of the DroneKit API is the movement of the vehicle
itself.

Arm

On a drone the vehicle will first have to start spinning the motors with the propellers
attached to them (also called “arming the vehicle“). This can be done by trying to arm the
vehicle by sending the command to arm as long as it hasn’t armed yet.

Listing 3.4: Shows the code required to wait for a vehicle to be armable and then arms the
vehicle

3. Software (Fabian) 19

1 print "Basic pre-arm checks"
2 #wait for the autopilot to be ready.
3 while not vehicle.is_armable:
4 print " Waiting for vehicle to initialise..."
5 sleep(1)
6
7 print "Arming motors"
8 # Copter should arm in GUIDED mode
9 vehicle.mode = VehicleMode("GUIDED")

10
11 # Confirm vehicle armed before attempting to take off
12 while not vehicle.armed:
13 vehicle.armed = True
14 print " Waiting for arming..."
15 sleep(1)

Takeoff

After the vehicle is armed it is possible to take off to a certain altitude. The program
waits for the UAV to reach a certain altitude to eliminate a possible error in the sensors
measurement an inaccuracy of 5% is included.

Listing 3.5: Takes off and waits for the vehicle to have reached the target altitude with an
error of 5%.

1 print "Taking off!"
2 vehicle.simple_takeoff(10)
3
4 while True:
5 #prints current altitude.
6 print " Altitude: ", vehicle.location.global_relative_frame.alt
7 #stops current loop if the target altitude is reached.
8
9 if vehicle.location.global_relative_frame.alt>=10*0.95:

10 print "Reached target altitude"
11 break
12 sleep(1)

In Air Movement

After arm and takeoff the vehicle should already be in mode “GUIDED“. Then the speed is
set to a realistic velocity always measured in m

s . Setting the speed doesn’t do anything until
a function is called that actually changes the position of the vehicle. Such a function can
either be the approach of a coordinate or a specified movement in either the pitch, yaw or
roll axis to the relative frame of the UAV. For the flight to a coordinate a LocationGlobal
object has to be created it concludes the latitude, longitude and altitude of the specified
node.

Listing 3.6: Code snipped for flying to a coordinate.
1 vehicle.airspeed = 3
2 loc = LocationGlobal(latitude, longitude, altitude)
3 vehicle.simple_goto(loc) #initiates the movement in air.
4 #calculates the remaining distance from current position to node
5 remainingDistance=get_distance(vehicle.location.global_relative_frame, loc)
6 #loops as long as the distance to the node is 1 meter or less
7 while not remainingDistance <= 1:
8 print "Distance to target: ", remainingDistance

3. Software (Fabian) 20

9 sleep(0.1)
10 remainingDistance=get_distance(vehicle.location.global_relative_frame, loc)
11 print "reached node!"

The second method of moving the vehicle in air is the relative movement of the frame.
There are certain methods of doing that but some of them are not yet implemented in
the DroneKit API. Most commonly movement gets described as velocity on a specific axis
(pitch, yaw, roll). Therefore the change of position can be calculated via vectors.

Listing 3.7: Code snipped for flying to a coordinate.
1 msg = vehicle.message_factory.set_position_target_local_ned_encode(
2 0, # time boot ms (not used)
3 0, 0, # target system, target component
4 mavutil.mavlink.MAV_FRAME_BODY_OFFSET_NED, # frame
5 0b0000111111000111, # type mask (only speeds enabled)
6 0, 0, 0, # x, y, z positions (not used)
7 velocity_x, velocity y, velocity z, # x, y, z velocity in m/s
8 0, 0, 0, # x, y, z acceleration (not supported yet, ignored in GCS Mavlink)
9 0, 0) # yaw, yaw rate (not supported yet, ignored in GCS Mavlink)

10
11 # send command to vehicle on 1 Hz cycle
12 for x in range(0,duration):
13 print x
14 vehicle.send_mavlink(msg)
15 sleep(1)

3.4 Communication

As the Raspberry Pi is most of the time not in range of a wireless network, alternatives
are necessary to communicate with the drone during flight.

As a solution the integrated WiFi module of the Raspberry Pi 3 is turned into an Access
Point and a simple DHCP server is installed for dynamic ip allocation, using hostapd and
isc-dhcp-server respectively.
This allows remotely controlling the Raspberry Pi via SSH, which makes executing new
programs easier and debugging more comfortable.

3.5 Camera Stream

Furthermore, a simple webstream application is implemented that serves the processed
images of the camera in real time. It’s a python script that utilizes Flask [29] as a webserver.
With this it can be monitored how the image processing algorithm interprets the images
during a flight. Flask helps finding faults in the street detection program. Since it acts like
a usual website, the stream can be accessed from any device connected to the Raspberrys
Wifi.

Chapter 4

Navigation (Fabian)

One of the most challenging tasks when it comes to developing software for autonomous
vehicles, is to find an optimal path on which your vehicle will move. Therefore the de-
veloper has to decide which input sensors, cameras or other utilities will be used for a
robust identification of obstacles. When dealing with self-driving cars or other Unmanned
Ground Vehicles (UGH) there’s usually more than enough space for integrating such de-
vices. Drones on the other hand restrict the developer by its physical limitations. The
quadcopter used in this work has a maximum payload of about 500 g, which makes it hard
to use heavy 3D depth cameras. Furthermore, the computational resources on board a
drone are, in comparison to usual desktop computers, meager, making traditionally used
mapping algorithms unusable, as they are computationally expensive.

For navigating outdoor, GPS is a reliable method and it’s used to stabilize and assist
the drone used in this project.

4.1 Global Positioning System (Fabian)

GPS is a satellite-based navigation system. GPS can be used in all weather conditions as
long as the receiver is in sight of four or more satellites [30, pp.1–3].

World Geodetic System 1984 (WGS84) is the coordinate system used in conjunction
with GPS for position determination. WGS84 maps the GPS data to a latitude and a
longitude; the coordinates are measured in degrees.

Latitude specifies the north-south coordinate of the position. The Equator’s position
has a latitude of 0°, the South Pole has a latitude of -90° and the North Pole has a latitude
of +90°. The distance between one degree latitude is roughly 111 km.

Longitude specifies the west-east coordinate of the position. The 0° longitude passes
through the prime meridian (Greenwich) [31]. Longitudes range from -180° to +180°. Neg-
ative longitudes are west of the prime meridian and positive longitudes are east of it. The
distance between one degree longitude depends on the latitude. The closer the latitude is
to the poles, the smaller the distance between the longitudes gets.

4.1.1 Calculating the Distance between two GPS Coordinates

The distance in meters between two coordinates is needed multiple times, for example to
determine when the UAV is far enough away from the starting point.

There are various approaches for calculating the distance between two points. To de-
termine the best method for the given use-case, a set of approximations were compared:

21

4. Navigation (Fabian) 22

Equirectangular Approximation

Equirectangular means that the longitudes and latitudes are mapped as vertical straight
lines and horizontal straight lines, respectively. Then the Pythagorean theorem can be used
to calculate the distance between two points:

x = ∆λ · cosϕ

y = ∆ϕ

d = R ·
√
x2 + y2

where:

λ ... longitudes in radians
ϕ ... latitudes in radians
ϕ ... arithmetic mean of the latitudes
R ... Earth radius ≈ 6.371 · 106m
d ... distance between the two points in meters

The equirectangular approximation doesn’t consider the ellipsoidal shape of the earth
and therefore is only accurate for d� R.

Haversine Formula

A more precise calculation can be achieved by assuming a spherical Earth. The haversine
formula [32, p.159]

a = sin2 (∆ϕ/2) + cosϕ1 · cosϕ2 · sin2 (∆λ/2)

c = 2 · atan2 (
√
a,
√

1− a)

d = R · c
where:

a ... an intermediate result
c ... the angle between the two points in radians

is a quite good approximation as long as the latitudes are not close to the poles.

Vincenty Formulae

If the Earth is treated as an ellipsoid, an even better precision can be achieved. The
Vincenty formulae is such and approximation and has a precision of about 0.5 mm [33,
pp.88–93]. Computationally, it’s a lot more extensive compared to the previous approaches.

4.1.2 Offsetting a GPS Coordinate

Moving a coordinate in a specific cardinal direction relative for a certain amount of meters
is needed to determine GPS coordinates relative to the UAV. For calculation an approach
similar to the equirectangular approximation is used:

ϕ =
d

R
· cos θ + ϕ0

λ =
d

R
· sin θ

cosϕ0
+ λ0

4. Navigation (Fabian) 23

where:

ϕ0 ... latitude of the original coordinate
λ0 ... longitude of the original coordinate
θ ... cardinal direction
d ... distance in meters

Same as the compass rose, the cardinal direction is split into 360° clockwise, starting
north with 0°.

4.2 Usage of Map Data

An offline map is used to identify the initial position and generate a path that leads to the
final position, where the breakdown triangle should be placed. This path consists of a list
of GPS coordinates which all lie within the bounds of the street. It is assumed that the
space above the street is empty regarding any obstacles which could endanger the vehicle.

4.2.1 OpenStreetMap

Open Street Map (OSM) is a crowd-sourced project which provides volunteered geographic
information of the whole world. It’s data is published under the Open Database License,
granting free access to anyone.

Why OSM?

Popular map services (e.g., Google Maps) prohibit mass downloading of their data or using
it in a derived work, but OSM allows developers to store their geographic data and modify
it. Since the Raspberry Pi is not connected to the Internet during flight, a offline geographic
data is mandatory.

Data Model

A OSM data file logically consists of three different element types which try to model the
physical world:

• Node: This element represents a physical point in space. It’s defined by its latitude
and longitude.

• Way: An ordered list of nodes. A way could be a street, river or any other structure
that can be represented as a polygonal chain or as a closed polygon (e.g., a parks
border).

• Relation: Relations model the geographical relationship between two objects (e.g.,
all bus stop nodes of a bus line). There aren’t any relations that hold relevant data
for highways, so this element type is neglected in this study.

Additionally every element may have multiple tags which describe the purpose and
type of the according element. A tag consists of a key and a value, which are presented in
the form of "key"="value".

The key is used to describe a feature and the value gives detailed information about
the feature. The most important key that can be defined for ways is the highway key. It
specifies that the corresponding way is some kind of road, street or path. The value for
this key names the type of the street. For example the tag "highway"="motorway" would
describe that the according road is a motorway, which implies that cars may use this way.

4. Navigation (Fabian) 24

UAV

OSM Nodes

line A

line B

point A

point B

Figure 4.1: Illustrating the problematic of reverse geocoding using a circular lookup. The
lines A and B approximate the bounds of the street and together with the dotted lines they
build the rectangle used for filtering the OSM Nodes

This information is useful if one wants to implement different behavior for certain types of
streets.

Data Format

A map of the whole world can be downloaded at the OSM website [34]. The map data
is available in two formats: human readable Extensible Markup Language (XML) and
Protocolbuffer Binary Format (PBF). The PBF is a compressed alternative to the XML
format and needs far less disk space. The map data of Austria is about 500 MB large
using PBF versus 800 MB using a bzip2 compressed XML format. Since there is little
storage available, the PBF map data is used. The raw map data still contains relatively
much irrelevant data and therefore only the nodes and ways that represent actual streets
are extracted from the original data. For stripping the irrelevant data, the open sourced
command-line tool Osmosis [35] is used. The filtered map of Austria is then only about
70 MB large, which is a great improvement.

4.2.2 Reverse Geocoding

Geocoding means converting a textual description of a location (the description could be
the name of the country, city and street) to a coordinate. Reverse geocoding is the oppo-
site process that gets a readable location using latitude and longitude as input. In most
applications figuring out the country or city is sufficient and relatively easy. Using Open-
StreetMap that would mean comparing all nodes with the given position and determining
the nearest node. The node would then contain information about the country and city
associated to it. Finding the nearest street is more difficult because it might be that a node
of another street is closer to the position than the next node of the actual street as shown
in figure 4.1. Therefore an algorithm was developed that doesn’t use a circular lookup but
restricts the set of possible nodes to a certain direction.

4. Navigation (Fabian) 25

Approximating the Bounds of the Street

Instead of searching in a circle around the initial position, a rectangle is modeled that
should approximate the street. To determine if the node is inside the rectangle shown in
4.1 following statements have to be true:

1. The coordinates of the node have to be between the lines A and B
2. The node is in front of the UAV and not behind
3. The nodes distance does not exceed a certain value

Defining the Lines A and B

The lines A and B are defined as a linear equation derived from the formula used for
offsetting a GPS coordinate:

ϕ · sin θ − λ · cos θ · cosϕ = ϕ0 · sin θ − λ0 · cos θ · cosϕ0

where:

(ϕ0, λ0) ... starting point of the line
θ ... the orientation of the line
(ϕ, λ) ... any point on the line

Based on this equation the lines are calculated as in the following code snippet:
1 pointA = move_coord(self.coord,self.tolerance,self.angle + 90.0)
2 pointB = move_coord(self.coord,self.tolerance,self.angle - 90.0)
3
4 lineA = create_line(pointA,self.angle)
5 lineB = create_line(pointB,self.angle)
6
7 upper_bound = max(lineA,lineB)
8 lower_bound = min(lineA,lineB)

Description of variables and functions:
• self.coord: Tuple that holds the coordinate of the UAV measured in degrees.
• self.angle: Cardinal direction of the UAV measured in degrees.
• self.tolerance: Distance from the UAV to point A or B in meters
• move_coord(coordinate,distance,cardinal_direction): offsets a coordinate as described

in 4.1.2.
• create_line(coordinate,cardinal_direction): calculates the right side of the former

equation returning a float value.
With the bounds set up it can be checked if a coordinate X is between the two lines using
the expression lower_bound <= create_line(X,self.angle) <= upper_bound.

Chapter 5

Computer Vision (Fabian)

Computer vision refers to extract semantical information from an image using a computer
program. It tries to identify physical objects just like a human would do. It’s a large field
that can be used for various tasks like face detection or counting how many people are in
a given image. In this work computer vision is used to identify the outer road marking of
a street so that the UAV can navigate accordingly. [36, pp.2–3]

5.1 Misconception of Computer Vision

Because Computer Vision tries to mimic the human eye in certain aspects, it is often
understood as an attempt to completely imitate human vision. This is indeed a misun-
derstanding since such implementations have to be limited to certain tasks, thus restrict
the amount of error possible. Identifying a car in an image is quite intuitive to humans as
years of experience have influenced ones visual perception, but a computer only sees a grid
of numbers in those images, so one assigned task is already hard enough. [36, pp.1–4]

There is another misconception about the uses of computer vision. Most people think
of surveillance, face recognition, unmanned flying vehicles or other uses on the web. Very
few know of its other purposes in aerial photography, or manufacturing. Almost any mass-
produced Item has been scanned for errors using some sort of computer vision. [36, pp.1–4]

Since it’s already used in so many fields and has still an increase in demand, there are
several programming libraries available.

5.2 OpenCV

OpenCV is, as the name implies, an open source computer vision library written in C/C++.
The Python module which provides an interface of the native C/C++ library and practi-
cally has the same functionality, is used for image processing. There are implemented more
than 500 functions in OpenCV used for a wide variety of different tasks. [36, pp.1–2]

The library abstracts the actual implementation of the different algorithms and and the
same time still gives developers the opportunity to tinker with different settings, making it
still possible to adjust them to the given task. Additionally, one doesn’t have to know all the
implementation details, making it possible to only focus on the mathematical challenges
which are demanding already.

26

5. Computer Vision (Fabian) 27

(a) original image (b) gray-scale image

Figure 5.1: On the left side the original image is displayed. The right image shows how the
initial one looks like after it has been converted to gray-scale.

5.3 Image Data Format

The images are generally saved as RGB bytes in memory, where each color is a 2-dimensional
array and each color value can range from 0 to 255 which corresponds to 1 byte of data. The
Pi Camera used has a resolution of 8 Mega-pixels, meaning that one captured image uses
roughly 24 MB of RAM. Before applying any additional image processing algorithms to
it, the image is converted to gray-scale (see 5.1), meaning that it only consists of one byte
array using 8 MB of RAM. Therefore only one third of the memory space is needed, which
makes applying the following algorithms easier and more efficient in terms of memory and
CPU usage.

5.4 Smoothing

Camera images have practically always some amount of noise. Noise in this context is
defined as any unwanted disturbance that interferes with the desired image. Such distur-
bances be caused by electrostatic or electromagnetic coupling with nearby power lines,
radio transmitters or other electromagnetic signals in general. [37, pp.5–6]

Therefore the image is smoothed before any feature detection algorithms (e.g. line
detector) are applied. Skipping this step would increase the likelihood of falsely detected
features drastically.

5.4.1 How does Smoothing Work?

There are various different approaches for blurring an image, but they generally use the
same principal. The idea is to normalize the image. Normalizing is understood as bringing
the different intensity levels of the pixels closer and therefore eliminate intensities that
differ greatly from their neighboring pixels. How many neighbors are included is decided
by the kernel size.

5. Computer Vision (Fabian) 28

5.4.2 Convolution Matrix

The convolution matrix, also called kernel, is used for calculating the new value of a pixel
when smoothing or for other filter operations. The different smoothing algorithms only use
different values for the kernel. 3x3 is the most common size for a convolution matrix, since
it’s sufficient to consider all direct neighbors of one pixel. In the following example it is
shown how a 3x3 kernel is applied to a pixel of an arbitrary image:

a b c
d e f
g h i

∗
1 2 3

4 5 6
7 8 9

 = (i·1)+(h·2)+(g ·3)+(f ·4)+(e·5)+(d·6)+(c·7)+(b·8)+(a·9)

Where the 3x3 matrix consisting of the letters a to i represents a part of an image and
the matrix denoted by the numbers 1 to 9, a fictive kernel. The right hands side equation
result would be the new value for the middle pixel e, after the kernel was applied. [38,
pp.233-234]

5.4.3 Mean Filter

As the name suggests, the mean filter takes the mean value of the pixels inside the kernel
for calculating the new intensity value and thus normalizing the image. Therefore a 3x3
convolution matrix for a mean filter looks like:

1

9

1

9

1

9
1

9

1

9

1

9
1

9

1

9

1

9

The perk of this method is its straight forward nature. The downside is that a single
discordant value can distort the mean and create unnatural intensity levels, that are not
present in the original image.[38, pp.150–152]

5.4.4 Gaussian Blur

Under utilization of the 2-D Gaussian function

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

the kernel can be generated. The original image is blurred to a certain degree depending
on the standard deviation σ. The larger σ gets, the greater will the smoothing effect be. As
σ grows larger a bigger kernel size is needed to properly reflect the Gaussian distribution.
[38, pp.156–159]

The following 5x5 convolution matrix is an example for the Gaussian Blur using σ = 1:

1

115

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

5. Computer Vision (Fabian) 29

(a) gray-scale image (b) blurred image

Figure 5.2: Using a standard derivation σ of 1.0 and a ch:navigationkernel size of 5x5 yields
this blurred image as result.

5.4.5 Implementation in OpenCV

For applying the Gaussian Blur to a gray-scale image, the OpenCV library provides the
function cv2.GaussianBlur. The following snippet show how the method is invoked:

1 #Read image from camera
2 img = self.video.read()
3 #Convert image to gray-scale
4 imgray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
5
6 ksize = (5,5)
7 sigma = 1.0
8 imgblur = cv2.GaussianBlur(imgray, ksize, sigma)

Description of variables and functions:
• self.video.read(): Reads the current frame from the PiCam
• ksize: Kernel size used for the Gaussian Blur. Note that the matrix not necessarily

has to have the same width as height. But the convolution matrix needs a center,
thus making width and height odd numbers.

• sigma: Standard derivation of the distribution function.
• imgblur: The image after the Filter has been applied.

5.5 Edge Detection

Edge detection is a technique that uses gray-scale images to determine the boundaries
between two regions of different intensity values [38, p.183]. With the utilization of such
algorithms it is possible to filter the road markings and thus detect them.

5.5.1 Canny Edge Detector:

The Canny Edge Detection Algorithm was one of the first feature detector used in this
project. It is divided into 5 different steps:

1. Gaussian smoothing to reduce image noise
2. Find the gradients of the image

5. Computer Vision (Fabian) 30

3. Suppress non-maximum values
4. Use two thresholds for determining potential edges
5. Suppress edges that are not attached to strong edges

Smoothing:

Firstly the input image is smoothed using the Gaussian Blur discussed previously. It’s
important to reduce noise since if one didn’t, the noise could be mistaken for edges. [39,
p.2]

Find Gradients:

The next step is to determine where the intensity of the images changes the most, those
points have a large gradient magnitude. In order to calculate the magnitude of the gradients
the Sobel-operator hast to be applied first. The Sobel algorithm returns the gradient in the
x- and y-direction by applyich:navigationng the following kernels, respectively: [39, p.3]

KGX =

−1 0 1
−2 0 2
−1 0 1

 KGY =

 1 2 1
0 0 0
−1 −2 −1

Now the overall magnitude of the gradient can be determined by using the Pythagorean

theorem

|G| =
√
G2

x +G2
y

or a simpler Euclidean distance function like the Manhattan distance

|G| = |Gx|+ |Gy|

to reduce the computational complexity. [39, p.3]

Non-maximum Supression:

The next step is to remove gradients that lay next to each other, so that only one of them
remains. Therefore the local gradient with the highest intensity should be kept and the
rest deleted. The gradients that are compared are determined by their direction

θ = arctan
|Gy|
|Gx|

which is rounded to the nearest multiple of 45°. Then the gradient is compared to the
nearest gradients that have the same or the opposite θ value. If the gradients magnitude
is not a local maximum, it will be erased from the image. [39, p.4]

Double Thresholding:

The remaining pixels can still be result of noise or other color variations. Canny’s edge
detector uses a high and low threshold value, as opposed to a single value. If a pixel has
a greater intensity than the high threshold it is labeled as strong, if it’s between high and
low value as weak and all other pixels are suppressed. [39, p.5]

5. Computer Vision (Fabian) 31

Create Final Edge Image:

The strong edges are definitely part of the final image and therefore be immediately in-
cluded. The weak edges are only considered as final edges if they are connected to at least
one strong edge. The reasoning for this method is that most edges labeled as weak and not
connected to a strong edge, are probably caused by some sort of noise. Those which are
although connected to at least one, are likely to be part of the same edge and should be
included, so unintended gaps are prevented. [39, pp.5–6]

5.5.2 Implementation in OpenCV

(a) Image filtered using the Gaussian Blur.
The kernel size and σ are automatically cal-
culated by OpenCV.

(b) Image after the Canny’s Edge Detector
has been applied.

Figure 5.3: This figure illustrates the Canny’s Edge Detector by using the cv2.Canny func-
tion provided by the OpenCV library.

Figure 5.3 illustrates what the an blurred image looks like after the Canny’s Edge
Detector has been applied. The following code has been used to generate the graphics:

1 #Get current frame after Gaussian Blur has been applied
2 imgblur = self.get_blurred_img((5,5),1)
3
4 low_threshold = 50
5 high_threshold = 150
6 imgcanny = cv2.Canny(imgblur, low_threshold, high_threshold)

Description of variables and functions:

• self.get_blurred_img(ksize,sigma): Reads the current frame from the PiCam and ap-
ply the Gaussian Blur using a kernel size of 5x5 and σ = 1.

• low_threshold: The low threshold value used in double thresholding
• high_threshold: The high threshold value used in double thresholding
• imgcanny: The bitmap after the Canny’s Edge Detector has been applied.

Although it is part of the edge detection algorithm to apply the Gaussian Blur, one
can still manually lay a filter on top of it before passing it onto the edge detector. The
reason being that OpenCV does not give fine control about the smoothing mechanism
used in the cv2.Canny. The output is mainly influenced by the parameters low_threshold

5. Computer Vision (Fabian) 32

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

θ

−5

0

5

10

15
r

Figure 5.4: An example graph showing the line families for the points (8, 6), (4, 9) and
(12, 3), colored in red, green and blue, respectively. Only lines with r > 0 and 0 <= θ <= 2π
are considered.

↪→ and high_threshold. Those are the numbers used for the double thresholding step as
described previously in 5.5.1.

5.6 Line Detection

With the edges being singled out it’s still unclear what should be considered as a line and
thus as a border marking. One of the most used algorithms for simple line detection is the
Hough Line Transform [38, p.215].

5.6.1 Hough Line Transform

The algorithm makes use of the Polar coordinate system instead of the Cartesian one. The
parametric form of the linear equation

r = x · cos θ + y · sin θ
defines the family of lines for a known point (x, y), meaning that every pair (r, θ) that
satisfies said equation passes through the known point. The sinusoidal graph in 5.4 displays
the line families for three different points. With this representation the lines shared by the
points can be relatively easily recognized by looking at the intersections of the graph.

In the next phase the Hough Line Transform algorithm counts how many points of the
total amount of points have the same line in common by this method and then applies a
threshold removing all lines that don’t pass through at least the amount of points specified
by the threshold.

The simplicity of Hough Line Transform makes it quite easy to implement but also leads
to no fine control over the result as the threshold is the only input parameter supplied.
Thus it becomes apparent why feature detectors like the Canny’s Edge Detector have to
be applied prior to the actual line detector.

5.6.2 Implementation in OpenCV

Image 5.5b shows how the original image looks like when the lines obtained from the Hough
Line Transform are drawn onto it. At first, the original image was read, the Canny’s Edge
Detector applied and at last the line detection:

5. Computer Vision (Fabian) 33

(a) Image used as the base for the line trans-
form.

(b) Image after the Hough Line Transform
using a threshold of 200 has been applied.

Figure 5.5: The above two images nicely display how the Hough Line Transform works in
combination with another feature detector.

1 img = self_video.read()
2 imgray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
3 imgblur = cv2.GaussianBlur(imgray,(5,5),2)
4 imgcanny = cv2.Canny(imgblur,50,150)
5
6 lines = cv2.HoughLines(imgcanny,1,math.pi/180,200)
7 if lines is not None:
8 for line in lines:
9 for rho,theta in line:

10 x0 = rho*math.cos(theta)
11 y0 = rho*math.sin(theta)
12
13 #Make lines longer than the image so they fill the whole picture
14 x1 = int(x0 + 1000*(-b))
15 y1 = int(y0 + 1000*(a))
16 x2 = int(x0 - 1000*(-b))
17 y2 = int(y0 - 1000*(a))
18
19 #draw the line
20 cv2.line(img,(x1,y1),(x2,y2),(0,0,255),2)

Description of variables and functions:
• cv2.HoughLines(imgcanny,1,math.pi/180,threshold): The OpenCV call for applying the

Hough Line Transform. The constants 1 and math.pi/180 specify that the line should
start at the origin point. The threshold are minimal amount of points that have
shared by a line to be accepted.

• lines: A list holding all lines detected by the algorithm.
• rho: The r value of a line of the lines set.
• theta: The polar angle of the line.
• x0: The x-coordinate as in the Cartesian system.
• y0: The y-coordinate as in the Cartesian system.
• cv2.line(img,p1,p2,color),thickness: Draw the line on the original image, using a color

of (0,0,255), which is RGB an corresponds to red.
This is the first algorithm of the chain that actually doesn’t return another binary

5. Computer Vision (Fabian) 34

Figure 5.6: ©Land Niederösterreich, NÖ Atlas
An image sowing an applied Hough Line Transform. The red dot symbolizes the position
of the UAV(center of the image), the red lines are the ones detected by the Hough Line
Transform and the cyan ones are their polar vector.

image but instead it returns a list of lines saved in the polar form (r, θ). This is the last
algorithm in the image processing chain and after that only the logical lines that were
obtained are used.

5.7 Relative Position to Landmarking

After the line has been located, there still two unknown variables: the distance d to the
line and the angle α between the vehicle and the landmarking as shown in 5.6. Depending
on those values the UAV has to counter-steer in order to stay on the target. The program
generally attempts to keep a relative angle to the line of less than 5° to the line, trying to
minimize the total error and the need for counter-steering.

For the orientation α it is safe to assume that the PiCam lays directly in the yaw axis
and thus the center of the image can be seen as current location of the UAV. The error
caused is acceptable since the angle will eventually reach an equilibrium where it is parallel
to the landmarking.

5.7.1 Angle Calculation

When using the cv2.HoughLineTransform functions the line is returned as (r, θ). But one
has to be careful because in OpenCV, the origin (0,0) of a image usually starts at the top-
left hand corner and not on the bottom-left one. In this particular case there is virtually

5. Computer Vision (Fabian) 35

no difference, since the angle θ increases clock-wise. That means that in this context the
drone has an orientation of -180°.

Figure 5.6 shows that the angle between the red street line and the UAV is defined as
90°− α.

5.8 Distance Estimation

The next step is to roughly calculate the distance to the line. The problematic when making
such an estimation are the unknown variables like height of the UAV or the angle of the
camera. On one hand those values can fluctuate during flight and on the other hand the
sensors responsible for getting the actual height of the vehicle, may not necessarily be
accurate.

5.8.1 Camera and Focal Length

To understand the mathematics behind cameras, one has to roughly understand the dif-
ferent properties that its lens or other parts can have:

Lens GroundSensor

f d

h
s

Figure 5.7: This figure illustrates how the lens bends to light in order to get a bigger field
of view. The distance between the sensors and the lens is the focal length f , s is the the
width of the sensor, d is the distance to the ground and h is the field of view.

Figure 5.7 displays how the light is travels through the lens and onto the sensor. The
length between those two is called focal length [40, p.115] and is 3.04 mm for the PiCam,
the sensor has an image area of 3.68 ·2.76 mm2. The camera has an horizontal field of view
of about 62.2° [20]. The field of view (or sometimes called angle of view) is everything that
is seen by the camera.

Therefore a larger sensor or a smaller focal length increases the over all field of view
but on the loss of color fidelity since the sensor can only capture so many pixels.

5.8.2 Field of View Calculation

In photography the field of view is the field of vision of the camera, the parts of the real
world that it actually can see. Its value is usually given in degrees since the actual size
depends on the distance between camera and ground.

5. Computer Vision (Fabian) 36

Figure 5.8: A schematic showing what the horizontal field of view of the camera is. The
UAV shown in this figure does not correspond to the drone used in this project. Zenith is
called everything above the UAS and Nadir everything beneath it. The image was taken
from Motion Imagery Standars Board [41, p.66].

Horizontal Field of View

When taking figure 5.8 as reference the horizontal field of view can be calculated in meters
by using some simply geometry:

h = 2 · d · tan
FOVH

2

where:

h ... horizontal field of view in meters
d ... distance to the ground in meter
FOVH ... horizontal field of view in degrees, the PiCam v2 has a horizontal field of

view of about 62.2°

Vertical Field of View

The same applies to the vertical field of view, the only difference being that the FOVV has
an angle of 48.8°. The actual size of the vertical pixels and not only the horizontal ones is
needed, since landmarking will not always be parallel and thus for calculating the shortest
path, the vertical ones are needed as well.

5.8.3 Convert Pixels to Actual Meters

With the essential groundwork being done, the size that one pixel represents can be deter-
mined by using the resolution of the sensor. As mentioned before the PiCam v2 has 3280
width pixels and 2464 height pixels. Yet again, by usage of some trivial math the distance
in meters between the pixels can be calculated.

5. Computer Vision (Fabian) 37

width =
h

3280
height =

v

2464

where:

h ... width of the horizontal field of view in meters
v ... height of the vertical field of view in meters
width ... width of one pixel in meters
height ... height of one pixel in meters

5.8.4 Get Shortest Distance in Pixels

Now with the actual dimensions of a pixel known, the shortest distance from the UAV
to the line can be determined. The general formula for calculating the shortest between a
point and a line, that is given in the general equation

a · x+ b · y + c = 0

can be written in this form [42, p.15]:

d =
|a · x0 + b · y0 + c|√

a2 + b2

where:

x0 ... x coordinate of the UAV in the image
y0 ... y coordinate of the UAV in the image
d ... distance in pixels

Using the parametric equation from 5.6.1, we can substitute the constants and variables:

d = |sinθ · y0 + cosθ · x0 − r|

Note that the denominator of the original fraction is 1, as it equates to the Pythagorean
Identity sin2 θ + cos2 θ = 1.

The next step is to determine the width in actual meters. Since the horizontal field of
view is not the same size as the vertical one, the orientation of the drone to the line does
matter. It has to be kept in mind that the orientation of the UAV is not α in this context
but 90°−α. Thus when using sine and cosine they can be swapped out to achieve the offset
of 90°: sin 90°− α = cosα and cos 90°− α = sinα.

Bearing this in mind the actual distance l can be worked out:

l = cosα · d · height+ sinα · d · width

First, the amount of vertical and horizontal pixels is calculated using cosine and sine,
respectively. With the two groups being separated the height and width per pixel that was
determined previously, can be used to get the overall distance.

Chapter 6

Flight(Florian)

6.1 Autonomous vs. Manual Mission

A fully autonomous mission not only ensures the usability for every possible group of users
but it also guarantees a easy to use product. The breakdown drone is designed to help
people in a car accident to setup the breakdown triangle in a very easy and fast way so
the affected people do not have to worry about the triangle and simply can start working
on fixing their problems if possible. If however the breakdown drone were to be controlled
manually or semi manually it still takes time and effort a car accident casualty probably
doesn’t have. Drones controlled manually does mean a well trained pilot is required. So in
order to use the breakdown drone, at least one passenger has to be trained to not only fly
the drone but also feel comfortable in challenging situations like flying near fast moving
cars on a highway. In a semi manual operation there could be some kind of app involved
where the driver is able to set a location and/or a flight path for the drone in order to avoid
obstacles easily. Disadvantages of a fully autonomous drone are certainly the avoidance of
obstacles such as trees or other cars/trucks. Another very difficult aspect of an autonomous
drone are the moral issues such as: who is at fault if the drone crashes and causes another
accident? But with all that in mind it is still very beneficial to have a fully featured and
simple to setup drone in an emergency situation.

6.2 Pre-Flight

Due to the physical connection of the Raspberry Pi to the drone via USB cable, it is pos-
sible to communicate over the serial interface ACM0. In Raspbian all the serial interfaces
are found under the /dev directory. To ensure a stable connection the baudrate is set to
57600. This means there is a maximum data transfer rate of 57.6 kbit/s.

The vehicle then has to wait for a strong GPS signal in order to get the exact location.
Afterwards the location is read and additionally the cardinal direction which is used to
determine in which direction from its starting position it is supposed to head.

6.3 Takeoff

At this point it is still possible that the vehicle is not quite initialized yet. If thats the case
the program simply waits for the vehicle to continue.

38

6. Flight(Florian) 39

The vehicle now needs to be set into a GUIDED mode so the drone knows it is getting
its flight commands from the serial interface. Now the drone is ready to arm its motors.
This can take some time, hence the program has to wait for the vehicle to finish.

Taking off is now possible. The default height is 10 meters above the ground.

Listing 6.1: Code snipped for taking off.
1 print "Taking off!"
2 vehicle.simple_takeoff(aTargetAltitude) # Take off to target altitude, aTargetAltitude

= 10
3
4 while True:
5 #prints current altitude.
6 print " Altitude: ", vehicle.location.global_relative_frame.alt
7 #stops current loop if the target altitude is reached.
8
9 if vehicle.location.global_relative_frame.alt>=aTargetAltitude*0.95:

10 print "Reached target altitude"
11 break
12 sleep(1)

6.4 Flying the Path

The previously calculated path of nodes is stored in a python list of tuples. The tuple
contains two elements, the latitude and the longitude of the node.

6.4.1 Heading for a Node

It is now possible to fly to all nodes sequentially. Before the vehicle can head for a node
it has to be converted to a LocationGlobal object so the goto function knows where the
flight point is.

Listing 6.2: Code sniped that shows the approach of the calculated nodes.
1 #flying the waypoints
2 for node in path:
3 #converting the latitude, longitude and altitude to a LocationGlobal object
4 loc = LocationGlobal(node[0], node[1], 10)
5 print loc #prints the next node
6 #initiates the movement in air.
7 vehicle.simple_goto(loc, airspeed=3 , groundspeed=3)
8 #calculating the remaining distance from current position to node
9 remainingDistance=get_distance(vehicle.location.global_relative_frame, loc)

10 #checks if the current position is 1 meter or less towards the node.
11 while not remainingDistance <= 1:
12 print "Distance to target: ", remainingDistance
13 sleep(0.1)
14 remainingDistance=get_distance(vehicle.location.global_relative_frame, loc)
15 print "reached node!"
16
17 sleep(5)

6.4.2 Calculating the Distance to a Node

Now the Raspberry Pi constantly needs to check whether or not the node has actually been
reached. If the distance from the vehicle is less than one meter away from the location of

6. Flight(Florian) 40

the node it is considered as if the exact location is reached.

Figure 6.1: Shows the information needed to calculate the distance between the current
location and the node.

node = (48.013551, 16.320265)

location = (48.009288, 16.313751)

∆latitude = node.lat− location.lat = 0.004263

∆longitude = node.lon− location.lon = 0.006514

√
∆latitude2 + ∆longitude2 = 0.007785

fac = 40075017/360° = 1.113195 · 105

0.007785 · 1.113195 · 105 = 866.61m

6.5 Landing and Steering

While landing the drone is a task that can achieved by using the vehicle mode “LAND”
steering the vehicle towards the road side/line is a far more complicated task. The “LAND”
mode can be called by DroneKit API but the steering to the sides has to be made using
the MAVLink message factory shown below.

6. Flight(Florian) 41

Listing 6.3: The “LAND” mode gets called and after that, the vehicle steers to whatever
direction the function tells it to.

1 #landing
2 print "landing"
3 vehicle.mode = VehicleMode("LAND")
4
5 while vehicle.location.global_relative_frame.alt > 0.5:
6 sleep(0.2)
7 direction = Camera.calcwheretogo();
8 send_ned_velocity(direction[0], direction[1], direction[2], direction[3])
9 print vehicle.location.global_relative_frame.alt

The function “send_ned_velocity” steers in a certain direction for a certain amount of
time.

Listing 6.4: This function tells the drone to follow the specified vectors for a specified
amount of time.

1 def send_ned_velocity(velocity_x, velocity_y, velocity_z, duration):
2 #Move vehicle in direction based on specified velocity vectors for a certain

amount of time.
3 msg = vehicle.message_factory.set_position_target_local_ned_encode(
4 0, # time boot ms (not used)
5 0, 0, # target system, target component
6 mavutil.mavlink.MAV_FRAME_BODY_OFFSET_NED, # frame
7 0b0000111111000111, # type mask (only speeds enabled)
8 0, 0, 0, # x, y, z positions (not used)
9 velocity_x, velocity_y, velocity_z, # x, y, z velocity in m/s

10 0, 0, 0, # x, y, z acceleration (not supported yet, ignored in GCS Mavlink)
11 0, 0) # yaw, yaw rate (not supported yet, ignored in GCS Mavlink)
12
13 # send command to vehicle on 1 Hz cycle
14 for x in range(0,duration):
15 print x
16 vehicle.send_mavlink(msg)
17 sleep(1)

6.6 Releasing the Breakdown Triangle

As soon as the drone has landed safely the breakdown triangle can be dropped from its
mount. Therefore the Raspberry Pi needs to control the DC-motor attached to the custom
control module. The program needs to access the GPIO pins turn them to “HIGH” and
after a brief amount of time it needs to turn them off again.

Listing 6.5: This code turns the DC-motor attached to the GPIO pins of the Raspberry
Pi on and after 4 seconds off again.

1 import RPi.GPIO as GPIO
2 from time import sleep
3
4 GPIO.setmode(GPIO.BOARD)
5
6 #defines to which ports the motor is connected
7 Motor1A = 16
8 Motor1B = 18
9 Motor1E = 8

6. Flight(Florian) 42

10
11 #sets all the GPIO pins to read data
12 GPIO.setup(Motor1A,GPIO.OUT)
13 GPIO.setup(Motor1B,GPIO.OUT)
14 GPIO.setup(Motor1E,GPIO.OUT)
15
16 #turns the motor on
17 print "Turning motor on"
18 GPIO.output(Motor1A,GPIO.HIGH)
19 GPIO.output(Motor1B,GPIO.LOW)
20 GPIO.output(Motor1E,GPIO.HIGH)
21
22 #waits for the motor to have opened
23 sleep(4)
24
25 #stopps motor again
26 print "Stopping motor"
27 GPIO.output(Motor1E,GPIO.LOW)

6.7 Way back to the Starting Point

After successfully unloading the breakdown triangle the drone can now start its way back
to the vehicle it initially came from. Therefore the drone has to take off again and fly the
list of nodes in the reversed order it came. After doing so the Breakdown Drone can land
again.

Listing 6.6: Arms the drone and takes off, then flies the waypoints in reverse order and
lands again.

1 arm_and_takeoff(10)
2
3 node_len = len(path)
4
5 while node_len > 0:
6 loc = LocationGlobal(path[node_len-1][0],path[node_len-1][1], 10)
7 print loc
8 vehicle.simple_goto(loc)
9

10 remainingDistance=get_distance(vehicle.location.global_relative_frame, loc)
11 while not remainingDistance <= 1: #checks if the current position is 1 meter or

less towards the node.
12 print "Distance to target: ", remainingDistance
13 sleep(0.1)
14 remainingDistance=get_distance(vehicle.location.global_relative_frame, loc)
15 print "reached node!"
16 node_len = node_len-1
17
18 loc = LocationGlobal(current_latitude, current_longitude, 10)
19 print loc
20 vehicle.simple_goto(loc, airspeed=3, groundspeed=3)
21
22 remainingDistance=get_distance(vehicle.location.global_relative_frame, loc)
23 while not remainingDistance <= 1: #checks if the current position is 1 meter or less

towards the node.
24 print "Distance to target: ", remainingDistance
25 sleep(0.1)
26 remainingDistance=get_distance(vehicle.location.global_relative_frame, loc)
27 print "reached node!"
28

6. Flight(Florian) 43

29 print "landing"
30 vehicle.mode = VehicleMode("LAND")

6.8 Performance Analysis

In computer science the performance analysis is a key element of software development.
The methods of program analysis allows developers to better understand more complex
programs. Interpreters and Compilers can use certain tools of performance analysis to
optimize the runtime as well.

6.8.1 Why Performance Analysis?

In robotic environments controllers often have very limited resources available. Therefore
it is very important to write code which uses as little CPU runtime and internal memory
as possible. The main factors that have to be considered while looking at performance are
not only CPU runtime and memory usage but also

6.8.2 Different Methods of Analysis

The three main analysis tools are: static, dynamic and hybrid analysis.

The so called ’static analysis tools’ never modify the binary image of the application
but instead use techniques like source code instrumentation or sampling to obtain analytic
data. As soon as the results are recorded they can now be analyzed to determine any bot-
tlenecks that may exist in an analyzed program. Static analysis tools however are incapable
of modifying a running program, therefore any statistical data a developer wishes to deter-
mine has to be specified before the application is run. Since these tools report their results
asynchronously it is not possible to get notified of any performance issues while the appli-
cation is running and the performance is recorded. Meaning a developer can only get their
desired results after an entire run has completed, so static analytic tools can not provide
any real time feedback to diagnose the performance. In addition to that, said analysis tool
can cause unintended side affects because they require either a dedicated data collection
routines in a set of code or the use of external sampling routines. This can cause massive
overhead while gathering statistical data especially in embedded robotics systems. The
external code can additionally change the behavior of said analyzed program, therefore it
introduces performance problems that did not exist prior to analysis, this can even cause a
partially false analysis. Although they can cause so much trouble providing statistics, they
still gather mostly very useful data for a developer in the real world.[43]

Because static analysis tools view the binary image of said program as a ’black-box’
that should not be modified under any circumstances, dynamic analysis tools rely on mod-
ification of the binary image of the application. These modifications are typically inserted
during runtime of the application so a highly accurate statistic can be gathered in real
time. This enables insight into program performance that would not be possible for static
analytic tools. Dynamic analysis tools get divided into two different types: binary instru-
mentation and probing. Tools that use binary instrumentation are able to inject customized
analysis routines into arbitrary locations within an application binary to record wide vari-
ety of performance data. Probing tools however need support routines enabled by shared
librariesl to gather information about the systems internal status, this enables the analysis
of multiple levels of abstraction. Because binary instrumentation tools are able to inject

6. Flight(Florian) 44

analysis routines into the application binary, they are able to change the structure of the
application they are supposed to profile. Here as well programs tend to run a little bit
slower during the analysis process caused by the insertion of performance monitoring rou-
tines. In general it is recommended for developers to only analyze only those code segments
that are more likely to cause performance issues so the rest of the application does not get
affected by the profiler.[43]

Developers who use hybrid profiling methods try to blend in parts of both static and
hybrid analysis methods. This allows to only implement the most effective features both
methods offer. Therefore these profiler are often capable of providing a level of utter util-
ity that is impossible to be achieved by any single purpose analysis mechanism. Due to
the wide variety of mixture of both static and dynamic analysis methods it is not really
possible to determine a ’typical’ implementation of a hybrid profiler. It is to be mentioned
that if a hybrid profiler needs more runtime than a single-purpose profiler it is of no avail.
This massive overhead comes from the fact that certain types of static and dynamic in-
strumentation mechanisms are unable to run in parallel mode. If that happens the effective
overhead of both static and dynamic methods add up together to the runtime of the pro-
filed application. So hybrid analytic tools should only be used by developers if they need
information that cannot be provided by single purpose profilers.[43]

6.8.3 Tested Device

Since the Raspberry Pi 3 is the main driver for the Breakdown Drone it is also the main
tested device. With its ARM Cortex-A53, 1.2 GHz Quad core CPU and 1 GB of RAM it
should be able to perform the tasks required quite easily.

6.8.4 Indicators Analyzed

The two main indicators for performance on the Breakdown Drones Raspberry Pi are
CPU usage and memory usage. Both of these can be gathered by the Linux/Unix tool ’ps’.
Therefore a batch script (displayed in 6.7) was written to gather data every second. This
batch script was executed at the begin of the application and ran in a sub process of the
main application at the end of the main application the subprocess was killed as well.

Listing 6.7: Bash script that writes the performance into a csv file every second.
1 #!/bin/bash -e
2 echo "performance tracking script"
3 NAME="$(date '+%Y-%m-%d--%H-%M-%S').csv"
4 touch $NAME
5 echo "date;time">$NAME
6 while true; do
7 DATE=$(date '+%Y-%m-%d;%H:%M:%S')
8 CPU=`ps -p $1 -o \%cpu | tail -n +2`
9 MEM=`ps -p $1 -o \%mem | tail -n +2`

10 echo "$DATE;$CPU;$MEM">>$NAME
11 sleep 1
12 done

6. Flight(Florian) 45

6.8.5 Performance during Flight

In figure 6.2 one can see the CPU performance on a graph over time. The performance was
measured every single second. Clearly noticeable is the first spike in performance, it is at
about 7% CPU usage overall. This happens during setup and path calculation. The next
low of CPU usage is directly after setup, this is because the Raspberry Pi has to wait for
the vehicle to initialize in order to safely lift off the ground. From this point on the CPU
usage hovers at about 2-2.5% during flight.

Figure 6.2: Shows the CPU usage over time during takeoff, flight and landing in percent.

The memory usage stays at a consistent 0.1% (as shown in 6.3) of the total amount of
memory. This is because every calculation happens in real time and none of the data needs
to be stored temporarily.

6.8.6 Discussion of Results

Since the CPU performance during regular flight is always below 3% it is possible to say
that it won’t effect the Linux operating system running in the back and whatever it has to
deal with. The memory is not taking much of the total memory as well, so in conclusion it is
safe to say the Raspberry Pi can handle the performance needed for flying the Breakdown
Drone easily.

6.8.7 Methods of increasing Performance

The first spike in CPU usage is when the vehicle is initializing, this could also be done
manually but since the Breakdown Drone is supposed to work without the interference of
a user this was not an option. the 2.3% could also be slightly reduced by outsourcing some

6. Flight(Florian) 46

Figure 6.3: Shows the Memory usage over time during takeoff, flight and landing in percent.

of the distance calculations to the flight controller itself. Though it has been determined
that the flight controller suffers from the additional CPU load from time to time.

Chapter 7

Conclusion

7.1 What was Planned?

The Breakdown Drone was supposed to be a helping tool in a very rough situation like a
car accident. It needed to be not only safe but very fail-safe as well. Probably the two main
problems during development were a safe flight and a safe landing. For the flight a path
finding had to be implemented to fly the drone approximately along the road the accident
is. Especially tricky was the landing because GPS is not always accurate enough to be able
to rely on GPS only. Therefore a system had to be developed that can help out when it
comes to precisely landing near the roadside. The use of a camera was the obvious choice.
With an open-source library like open-cv it is possible to detect either a roadside or a road
marking, based on this data the system should be able to judge what the right approach
is for the landing approach.

7.2 Benchmarking

7.2.1 Flight Accuracy

To test the drones accuracy under different circumstances like different wind levels or even
snowfall three shapes were drawn on a map, a square, a triangle and a straight line. The
coordinates of every shape were determined and used manually as the drones waypoints
instead of generating them based on the offline card material. After setting up a program for
each shape it could be started at any given time. During the testflights the Raspberry Pi on
the drone would record the actual location of the drone by writing the GPS coordinates into
a CSV-file every 0.5 seconds. After a complete flight the coordinates from the waypoints
were portrayed on a map and a straight line was drawn between them. The previously
recoded coordinates could now be displayed on the map as well. It also had to be recorded
with how much wind strength the testfight was made. It can be read from the map how
much the drone was off from the different shaped lines with a certain amount of wind
strength.

7.2.2 Landing Accuracy

One of the most important, if not the most important tasks of the Breakdown Drone is to
accurately land on the side of the road. It is not only dangerous for the drone but also the
bypassing cars and their occupants. The landing accuracy can simply be determined by
measuring how far the drone is off a specified target. To put it simpler, several testflights
are made telling the drone to land exactly on a straight line after each landing has been

47

7. Conclusion 48

done the distance between this line and the center of the drone is measured and recorded in
a CSV-file. This method can now be applied in different scenarios, like before with various
different weather conditions.

7.3 Testing

7.3.1 Testing of Flight Accuracy

Testing the flight accuracy turned out to be a little problematic because of the drone
behaving oddly. What is meant by that is that the 3DR Iris+ was crashing at seemingly
random occasions which it never did before. Seemingly random means it was never quite
clear as of why this is the case. Sometimes it would crash right after takeoff not even
making it to its target altitude, sometimes it would crash after reaching the targeted
altitude and sometimes when a node was reached. At this time firmware version 3.4 was
on the Pixhawk autopilot. It seemed like this software version was not stable enough for
the Breakdown Drone so it was downgraded to an apparently more stable version 3.2.
The problem of crashing while taking off was resolved with this downgrade. However the
Breakdown Drone would still crash after reaching target altitude or after reaching the first
node. As a first method of debugging the drone was started multiple times under different
wind strengths. This however made no difference what so ever. A second guess was that the
simple_goto function of the DroneKit API was now working properly. So to eliminate this
reason of failure a function was implemented that would send a MAVLink message directly
without the intervention of the API. But the result was still the same, the Breakdown
Drone still crashed. The third possible reason of failure was the hight sensor of the 3DR
Iris+. To tell wether or not this was the reason for the drone to crash the drones measured
altitude was printed onto the console of the Raspberry Pi. During flight one could clearly
see the target altitude was printed on the console, however the drone was loosing altitude
rapidly. Because of these tests one can assume that the altitude sensor was the point of
failure. So neither the build in function from the API could detect a drop in height nor the
self written function could steer against this drop. For the Breakdown Drone to get back
in the air this sensor had to be replaced, however since these tests were made in February
of 2017 and the drone was already discontinued by the developers in July 2016, there was
no support for the drone anymore.

7.3.2 Testing of the Landing Accuracy

Since the landing of the drone works by slowly descending at a certain velocity and waiting
for the graph of the accelerometer to spike, it was not affected by the failure of the height
sensor. For the data to be recorded the drone flew to an approximate altitude of about
10 meters off the ground. Then the program with the landing adjustment was started and
after the drone had landed it was measured how far off the drone was to the line that was
headed for. To collect meaningful data this process was repeated 25 times and after each
time the steering function was adjusted. Wether or not the drone was to the left from the
line or to the right was not significant to the test since the only interesting factor is the
deviation.

One can see in graph 7.1 that after about 11 tries and a deviation 8 to 11 cm was
reached and it was not possible to get any nearer to the line. This is can be because of
factors like the wind blowing the drone to the side just a little bit right before it lands.
Because the drone is already so near to the ground can neither detect the line anymore
nor steer to adjust to it.

7. Conclusion 49

Figure 7.1: This graph shows the deviation of the drones middle point to the line the drone
was supposed to head for in the process of landing the vehicle as near as possible to the line.

7.4 Results

The landing did work with an average error of about 9 cm which for a task like this is
more than accurate enough. Since the height sensor did stop working during development
of the Breakdown Drone it was sadly not possible to fully test its capabilities. However it
was fully implemented and should work on any other drone with the Pixhawk autopilot
as the flight controller. Because of the more or less success of this project it can safely be
said that a further development in this field can be recommended.

7.5 Further Development

The key features of the Breakdown Drone are implemented however that does not mean it
is in its final state. There are several areas that can still be expanded or improved.

7.5.1 Obstacle Avoidance

Obstacle avoidance is a very important topic when it comes to movement of autonomous
vehicles. It can range from an autonomous driving car that needs to be able to dodge
people suddenly jumping on a street to a drone needing to evade an upcoming tree. This
is especially important when the life of a human being could be on the line. For such a
important task very good sensors have to be used. The probably best sensor for a cheap
price is the Microsoft Kinect. The Kinect however has to be looked at carefully because
the IR sensor might not work outdoors. If this is the case, a different, preferably a sensor
with a viewing angle of 360° has to be purchased and this is going to cost a lot of money.

7. Conclusion 50

7.5.2 Hardware Upgrade

Hardware upgrade not only means the replacement of the hight sensor of the 3DR Iris+,
which of course is the most problematic component of the drone. Different drones in general
should be taken into consideration when looking to develop the Breakdown Drone further.
If possible a drone with higher payload capacity should be acquired. This can mean a better
camera can be put on the UAV, an additional infrared sensor or even a better computer
then the Raspberry Pi could be added to the drone if needed.

7.5.3 Triangle

If a different drone is purchased one may look at a different breakdown triangle as well.
The version for this drone was designed to be light weight so the 3DR Iris+ is still able
to carry it alongside the weight of the custom control module, while still withstanding the
strong winds from the Breakdown Drone while it is flying away. A heavier triangle means
better stability and a higher surface and reflection area, therefore easier to recognize for
other bypassing drivers.

Acronyms

3DR 3D Robotics. 6, 13

CSI Cameral Serial Interface. 13

GPIO General-purpose input/output. 9, 13
GPS Global Positioning System. 1, 6, 7, 16–19

OSM Open Street Map. 18, 19

PBF Protocolbuffer Binary Format. 19

UAS Unmanned Areal System. 2
UAV Unmanned Areal Vehicle. 1–4, 6, 16, 17, 19–21
UGH Unmanned Ground Vehicles. 16

WGS84 World Geodetic System 1984. 16

XML Extensible Markup Language. 19

51

Bibliography

[1] Unmanned aircraft systems (uas). [Online]. Available: http : / / www . icao . int /
Meetings/UAS/Documents/Circular%20328_en.pdf (visited on 11/19/2016).

[2] [Online]. Available: http://dspace.bracu.ac.bd/xmlui/bitstream/handle/
10361/4203/Drone-Thesis%5C%20Paper.pdf (visited on 11/19/2016).

[3] Telemetry, summary of concept and rationale. [Online]. Available: http://adsabs.
harvard.edu/abs/1987STIN...8913455 (visited on 11/19/2016).

[4] [Online]. Available: http://www.ctie.monash.edu.au/hargrave/rpav_home.html
(visited on 11/19/2016).

[5] Remote piloted aerial vehicles. [Online]. Available: http://www.sf-encyclopedia.
com/entry/low_a_m (visited on 11/19/2016).

[6] Reginald denny (1891-1967); the dennyplane. [Online]. Available: http://www.ctie.
monash.edu.au/hargrave/dennyplane.html (visited on 11/19/2016).

[7] [Online]. Available: http://www.historyplace.com/worldwar2/timeline/v1.htm
(visited on 11/19/2016).

[8] [Online]. Available: https://www.flightglobal.com/pdfarchive/view/1952/
1952%5C%20-%5C%201148.html (visited on 11/19/2016).

[9] [Online]. Available: http://www.dtic.mil/dtic/tr/fulltext/u2/a525674.pdf
(visited on 11/19/2016).

[10] [Online]. Available: http : / / motherboard . vice . com / read / vintage - videos -
show- the- us- air- forces- first- armed- drone- dropping- bombs (visited on
11/19/2016).

[11] [Online]. Available: http://www.wsj.com/articles/SB126325146524725387 (vis-
ited on 11/19/2016).

[12] [Online]. Available: http://cordis.europa.eu/programme/rcn/4902_en.html
(visited on 11/19/2016).

[13] [Online]. Available: https://www.wired.com/2012/01/drone-report/ (visited on
11/19/2016).

[14] [Online]. Available: https://amazon.com/primeair (visited on 11/19/2016).

[15] D. of Transportation(DOT), Rulemaking RIN 2120-AJ60: Operation and Certifica-
tion of Small Unmanned Aircraft Systems, 2015.

[16] J. Weier and D. Herring, Measuring vegetation(NDVI & EVI), 2000. [Online]. Avail-
able: https://earthobservatory.nasa.gov/Features/MeasuringVegetation/
(visited on 01/03/2017).

52

http://www.icao.int/Meetings/UAS/Documents/Circular%20328_en.pdf
http://www.icao.int/Meetings/UAS/Documents/Circular%20328_en.pdf
http://dspace.bracu.ac.bd/xmlui/bitstream/handle/10361/4203/Drone-Thesis%5C%20Paper.pdf
http://dspace.bracu.ac.bd/xmlui/bitstream/handle/10361/4203/Drone-Thesis%5C%20Paper.pdf
http://adsabs.harvard.edu/abs/1987STIN...8913455
http://adsabs.harvard.edu/abs/1987STIN...8913455
http://www.ctie.monash.edu.au/hargrave/rpav_home.html
http://www.sf-encyclopedia.com/entry/low_a_m
http://www.sf-encyclopedia.com/entry/low_a_m
http://www.ctie.monash.edu.au/hargrave/dennyplane.html
http://www.ctie.monash.edu.au/hargrave/dennyplane.html
http://www.historyplace.com/worldwar2/timeline/v1.htm
https://www.flightglobal.com/pdfarchive/view/1952/1952%5C%20-%5C%201148.html
https://www.flightglobal.com/pdfarchive/view/1952/1952%5C%20-%5C%201148.html
http://www.dtic.mil/dtic/tr/fulltext/u2/a525674.pdf
http://motherboard.vice.com/read/vintage-videos-show-the-us-air-forces-first-armed-drone-dropping-bombs
http://motherboard.vice.com/read/vintage-videos-show-the-us-air-forces-first-armed-drone-dropping-bombs
http://www.wsj.com/articles/SB126325146524725387
http://cordis.europa.eu/programme/rcn/4902_en.html
https://www.wired.com/2012/01/drone-report/
https://amazon.com/primeair
https://earthobservatory.nasa.gov/Features/MeasuringVegetation/

Bibliography 53

[17] M. Silvagni, A. Tonoli, E. Zenerino, and M. Chiaberge, “Multipurpose UAV for search
and rescue operations in mountain avalanche events”, Geomatics, Natural Hazards
and Risk, pp. 1–16, 2016.

[18] H. Chao, Y. Cao, and Y. Chen, “Autopilots for small unmanned aerial vehicles: A
survey”, International Journal of Control, Automation and Systems, vol. 8, no. 1,
pp. 36–44, 2010.

[19] [Online]. Available: http://space.skyrocket.de/doc_sdat/navstar.htm.

[20] Camera module - raspberry pi documentation, 2016. [Online]. Available: https :
//github.com/raspberrypi/documentation/blob/master/hardware/camera/
README.md (visited on 03/18/2017).

[21] J. Barnett, Controlling dc motors using python with a raspberry pi, 2014. [On-
line]. Available: https : / / business . tutsplus . com / tutorials / controlling -
dc - motors - using - python - with - a - raspberry - pi -- cms - 20051 (visited on
01/22/2017).

[22] I. Corporation, Enhanced host controller interface specification for universal serial
bus; revision 2.0, 2002.

[23] [Online]. Available: http://www.dji.com/products/drones (visited on 02/26/2017).

[24] [Online]. Available: http://www.banana-pi.org/m64.html (visited on 02/26/2017).

[25] [Online]. Available: http://www.pollin.de/shop/dt/MjY3NzkyOTk-/Bauelemente_
Bauteile/Entwicklerboards/Cubie_Board/Cubieboard_3_Cubietruck_Kit_A20_
2_GB_8_GB_WLAN_BT_SATA.html (visited on 02/26/2017).

[26] S. Wood, A brief history of python, 2015. [Online]. Available: https://www.packtpub.
com/books/content/brief-history-python (visited on 03/18/2017).

[27] [Online]. Available: http://qgroundcontrol.org/mavlink/start.

[28] [Online]. Available: http://python.dronekit.io.

[29] A. Ronacher, Flask, a microframework for python based on werkzeug. [Online]. Avail-
able: http://flask.pocoo.org/ (visited on 11/24/2016).

[30] A. El-Rabbany, Introduction to GPS: The global positioning system. Artech House,
2002.

[31] S. Malys, J. H. Seago, N. K. Pavlis, P. K. Seidelmann, and G. H. Kaplan, “Why
the greenwich meridian moved”, Journal of Geodesy, vol. 89, no. 12, pp. 1263–1272,
2015, issn: 1432-1394. doi: 10.1007/s00190- 015- 0844- y. [Online]. Available:
http://dx.doi.org/10.1007/s00190-015-0844-y.

[32] R. W. Sinnott, “Virtues of the haversine”, Sky and Telescope, vol. 68, no. 2, pp. 159+,
1984.

[33] T. Vincenty, “Direct and inverse solutions of geodesics on the ellipsoid with applica-
tion of nested equations”, Survey review, vol. 23, no. 176, pp. 88–93, 1975.

[34] Planet OSM. [Online]. Available: http://planet.openstreetmap.org/ (visited on
01/31/2017).

[35] Openstreetmap/osmosis. [Online]. Available: https://github.com/openstreetmap/
osmosis (visited on 01/31/2017).

[36] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV
library. "O’Reilly Media, Inc.", 2008.

http://space.skyrocket.de/doc_sdat/navstar.htm
https://github.com/raspberrypi/documentation/blob/master/hardware/camera/README.md
https://github.com/raspberrypi/documentation/blob/master/hardware/camera/README.md
https://github.com/raspberrypi/documentation/blob/master/hardware/camera/README.md
https://business.tutsplus.com/tutorials/controlling-dc-motors-using-python-with-a-raspberry-pi--cms-20051
https://business.tutsplus.com/tutorials/controlling-dc-motors-using-python-with-a-raspberry-pi--cms-20051
http://www.dji.com/products/drones
http://www.banana-pi.org/m64.html
http://www.pollin.de/shop/dt/MjY3NzkyOTk-/Bauelemente_Bauteile/Entwicklerboards/Cubie_Board/Cubieboard_3_Cubietruck_Kit_A20_2_GB_8_GB_WLAN_BT_SATA.html
http://www.pollin.de/shop/dt/MjY3NzkyOTk-/Bauelemente_Bauteile/Entwicklerboards/Cubie_Board/Cubieboard_3_Cubietruck_Kit_A20_2_GB_8_GB_WLAN_BT_SATA.html
http://www.pollin.de/shop/dt/MjY3NzkyOTk-/Bauelemente_Bauteile/Entwicklerboards/Cubie_Board/Cubieboard_3_Cubietruck_Kit_A20_2_GB_8_GB_WLAN_BT_SATA.html
https://www.packtpub.com/books/content/brief-history-python
https://www.packtpub.com/books/content/brief-history-python
http://qgroundcontrol.org/mavlink/start
http://python.dronekit.io
http://flask.pocoo.org/
http://dx.doi.org/10.1007/s00190-015-0844-y
http://dx.doi.org/10.1007/s00190-015-0844-y
http://planet.openstreetmap.org/
https://github.com/openstreetmap/osmosis
https://github.com/openstreetmap/osmosis

Bibliography 54

[37] C. D. Motchenbacher and J. A. Connelly, Low-noise electronic system design. Wiley
New York, 1993, pp. 5–6.

[38] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, “Hypermedia image processing
reference”, Department of Artificial Intelligence, University of Edinburgh, 1994.

[39] J. Stewart, Canny edge detection, 2009. [Online]. Available: http://watkins.cs.
queensu.ca/~jstewart/457/notes/24-canny.pdf (visited on 03/18/2017).

[40] T. Dobbert, Matchmoving: The Invisible Art of Camera Tracking. Sybex, 2005, isbn:
0782144039,9780782144031.

[41] “UAS Datalink Local Set”, Motion Imagery Standards Board, Standard, Oct. 2014.

[42] B. Spain, Analytical conics. Courier Corporation, 2007.

[43] J. Thiel, An overview of software performance analysis tools and techniques: From
gprof to dtrace.

http://watkins.cs.queensu.ca/~jstewart/457/notes/24-canny.pdf
http://watkins.cs.queensu.ca/~jstewart/457/notes/24-canny.pdf

	Diplomarbeit Dokumentation
	Diploma Thesis Documentation
	Introduction
	Overview (Florian)
	Goal (Florian)
	Definition (Florian)
	History (Florian)
	Commercial use of Drones (Fabian)
	Legal Position (Florian)
	Related Work (Fabian)
	Social Aspect (Florian)

	Hardware (Florian)
	Drone
	Autopilot System
	GPS Module
	Telemetry Module
	Motors
	Battery Pack

	Custom Build Control Module
	Raspberry Pi 3
	PiCam
	Motor to Release the Triangle

	Breakdown Triangle
	Release Mechanism

	Communication between Drone and Raspberry
	Architecture
	Host Controller

	Alternative Hardware
	Drone
	Raspberry Pi

	Software (Fabian)
	Programming Language
	Background
	Why Python2.7?

	MAVLink (Florian)
	Message System

	DroneKit (Florian)
	API Features
	Connection to a Vehicle
	Vehicle Modes
	Vehicle Attributes
	Vehicle Movement

	Communication
	Camera Stream

	Navigation (Fabian)
	Global Positioning System (Fabian)
	Calculating the Distance between two GPS Coordinates
	Offsetting a GPS Coordinate

	Usage of Map Data
	OpenStreetMap
	Reverse Geocoding

	Computer Vision (Fabian)
	Misconception of Computer Vision
	OpenCV
	Image Data Format
	Smoothing
	How does Smoothing Work?
	Convolution Matrix
	Mean Filter
	Gaussian Blur
	Implementation in OpenCV

	Edge Detection
	Canny Edge Detector:
	Implementation in OpenCV

	Line Detection
	Hough Line Transform
	Implementation in OpenCV

	Relative Position to Landmarking
	Angle Calculation

	Distance Estimation
	Camera and Focal Length
	Field of View Calculation
	Convert Pixels to Actual Meters
	Get Shortest Distance in Pixels

	Flight(Florian)
	Autonomous vs. Manual Mission
	Pre-Flight
	Takeoff
	Flying the Path
	Heading for a Node
	Calculating the Distance to a Node

	Landing and Steering
	Releasing the Breakdown Triangle
	Way back to the Starting Point
	Performance Analysis
	Why Performance Analysis?
	Different Methods of Analysis
	Tested Device
	Indicators Analyzed
	Performance during Flight
	Discussion of Results
	Methods of increasing Performance

	Conclusion
	What was Planned?
	Benchmarking
	Flight Accuracy
	Landing Accuracy

	Testing
	Testing of Flight Accuracy
	Testing of the Landing Accuracy

	Results
	Further Development
	Obstacle Avoidance
	Hardware Upgrade
	Triangle

	Acronyms
	Bibliography

