
HTBLuVA Wiener Neustadt
Höhere Lehranstalt für Informatik

D IP LO MA RB E IT

GRAMOC - Gradienten
Magnetometer Online Controller

Ausgeführt im Schuljahr 2017/18 von:
Entwicklung Server, Netzwerkprotokoll
Nico Kratky 5CHIF-13

Entwicklung App, Visualisierung
Nico Leidenfrost 5CHIF-14

Betreuer / Betreuerin:

Dr. Michael Stifter

Wiener Neustadt, am 2. April 2018

Abgabevermerk:

Übernommen von:



Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche
erkenntlich gemacht habe.

Wiener Neustadt, am 2. April 2018

Verfasser / Verfasserinnen:

Nico Kratky Nico Leidenfrost

i



Contents

Eidesstattliche Erklärung i

Diplomarbeit Dokumentation vi

Diploma Thesis Documentation viii

Kurzfassung x

Abstract xi

1 Introduction 1
1.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Requirements of GRAMOC . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Steel Belt Quality Inspection . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Handling Sensor Data . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Plotting Real Time Data . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Real Time Systems 4
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Hard Real-time Systems . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Soft Real-time systems . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Firm Real-time systems . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Programming Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 C/C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Server Sent Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 WebSockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Implementation Phase 1 8

3 Networking 9
3.1 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Data Interchange Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ii



Contents iii

3.5 Message framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5.1 Delimiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5.2 Length Prefixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.3 Security Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Server 13
4.1 Raspberry Pi 3 Model B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Raspberry Pi SenseHAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.1 Programming Language . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Android 17
5.1 History of Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Overview of Android Application Development . . . . . . . . . . . . . . . . 18

5.3.1 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.2 C/C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.3 Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.4 Kotlin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.5 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.1 Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.2 Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.3 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.4 Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.5 NavigationDrawer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4.6 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4.7 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II Lessons Learned 25

6 Problems 26
6.1 Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Software limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Plotting Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.5 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.5.1 Update Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.5.2 Buffer Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Résumé 28
7.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.2 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

III Implementation Phase 2 29

8 Software Architecture 30



Contents iv

9 FaPS Networking 31
9.1 TCP vs. UDP in Real Time Environments . . . . . . . . . . . . . . . . . . . 31

9.1.1 Connection-Oriented and Connectionless Protocols . . . . . . . . . . 31
9.1.2 Perfomance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.2 Handling Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.3 Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.4 Control Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

10 Filtering and Preprocessing System 35
10.1 Command Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.2 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.4 Data Serialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.5 Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10.5.1 Unix Domain Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.5.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.6 Storing Data Between Measurements . . . . . . . . . . . . . . . . . . . . . . 37

11 Saving Sensor Data 38
11.1 File Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11.1.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.1.3 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.1.4 HDF and HDF5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
11.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

11.3 C++ Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
11.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

11.4.1 Command Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . 39
11.4.2 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

12 Webapp 41
12.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.2 Vue.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

12.2.1 webpack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.2.2 Babel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.2.3 Vue Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.2.4 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.2.5 Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
12.2.6 WebSockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

12.3 Plotly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
12.3.1 Line Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12.4 D3.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
12.4.1 Line Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

12.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.5.1 2D Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.5.2 Archive Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.5.3 About Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13 Web Server 50



Contents v

13.1 Apache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13.2 NGINX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13.3 Apache vs NGINX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
13.4 Node.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
13.5 Express . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
13.6 socket.io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
13.7 REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13.7.1 Client-Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.7.2 Stateless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.7.3 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.7.4 Uniform Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.7.5 Layered System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.7.6 Code-On-Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.7.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

14 Data Analysis 55
14.1 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

14.1.1 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . 55
14.1.2 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . 57
14.1.3 Working with Streaming Data . . . . . . . . . . . . . . . . . . . . . . 58
14.1.4 r2 - Coefficient of Determination . . . . . . . . . . . . . . . . . . . . 59

14.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.2.1 Coefficient of Determination . . . . . . . . . . . . . . . . . . . . . . . 60
14.2.2 Matrix Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
14.2.3 Eigen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

15 Measurement Results 63
15.1 Car Mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
15.2 Test Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

15.2.1 Shifting Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
15.2.2 Driving in a Roundabout . . . . . . . . . . . . . . . . . . . . . . . . 64
15.2.3 Emergency Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
15.2.4 Oversteering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

15.3 Regression Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
15.3.1 Course 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
15.3.2 Course 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

16 Conclusion 68
16.1 Applications of GRAMOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

16.1.1 Steel Belt Quality Inspection . . . . . . . . . . . . . . . . . . . . . . 68
16.1.2 Transport Driver Verification . . . . . . . . . . . . . . . . . . . . . . 68
16.1.3 Sensor Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

16.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 70



HÖHERE TECHNISCHE BUNDES- LEHR- UND VERSUCHSANSTALT
WIENER NEUSTADT

Diplomarbeit Dokumentation

Namen der

Verfasser/innen

Jahrgang

Schuljahr

Thema der Diplomarbeit

Kooperationspartner

Aufgabenstellung

Realisierung

Ergebnisse

Fachrichtung: Informatik

Nico KRATKY 
Nico LEIDENFROST

5CHIF

2017 / 18

Gradienten Magnetometer Online Controller

F-WuTS

Für den industrielle Einsatz eines hochsensitiven 
MEMS Gradienten Magnetometer müssen dessen 
Sensorwerte möglichst echtzeitnah ausgelesen und in 
geeigneter Form dargestellt werden.

C++ für alle serverseitigen Applikationen 
HTML, CSS, JavaScript, Vue.js, Plot.ly für die mobile 
Applikation

Server zur Aufbereitung und Verteilung von 
Sensordaten 
Applikation zur Speicherung von Sensordaten 
REST-API zur Bereitstellung historischer Daten 
Web App zur Visualisierung von Sensordaten

vi



HÖHERE TECHNISCHE BUNDES- LEHR- UND VERSUCHSANSTALT
WIENER NEUSTADT

Typische Grafik, Foto 

etc. (mit Erläuterung)

Teilnahme an 

Wettbewerben, 

Auszeichnungen

Möglichkeiten der 

Einsichtnahme in die 

Arbeit

HTBLuVA Wiener Neustadt

Dr.-Eckener-Gasse 2

A 2700 Wiener Neustadt

Approbation

(Datum, Unterschrift)

Prüfer Abteilungsvorstand

Fachrichtung: Informatik

Screenshot der mobile App mit Daten eines 
Beschleunigungssensors während einer Notbremsung

AV Dipl.-Ing. Felix SchwabMMag. Dr. Michael Stifter

vii



COLLEGE OF ENGINEERING
WIENER NEUSTADT

Diploma Thesis Documentation

Authors

Form

Academic Year

Topic

Co-operation partners

Assignment of tasks

Realization

Results

Department: Computer Science

Nico KRATKY 
Nico LEIDENFROST

5CHIF

2017 / 18

Gradient Magnetometer Online Controller

F-WuTS

For industrial use of a highly sensitive MEMS gradient 
magnetometer, its sensor values must be read out as 
close to real-time as possible and displayed in a 
suitable form. 

C ++ for all server-side applications 
HTML, CSS, JavaScript, Vue.js, Plot.ly for the mobile 
application

Server for processing and distribution of sensor data 
Application for storing sensor data 
REST-API for providing historical data 
Web App for the visualisation of sensor data

viii



COLLEGE OF ENGINEERING
WIENER NEUSTADT

Illustrative graph, photo 

(incl. explanation)

Participation in 

competitions, 

Awards

Accessibility of diploma 

thesis

HTBLuVA Wiener Neustadt

Dr.-Eckener-Gasse 2

A 2700 Wiener Neustadt

Approval

(Date, Sign) 

Examiner Head of Department

Department: Computer Science

Screenshot of the mobile app with data of an 
accelerometer during emergency braking

AV Dipl.-Ing. Felix SchwabMMag. Dr. Michael Stifter

ix



Kurzfassung

Diese Diplomarbeit stellt GRAMOC vor. GRAMOC ist ein System das es ermöglicht Stahl-
bänder, ohne die Produktion stoppen zu müssen, effektiv zu charakterisieren. Dies wird
durch die Erfindung eines hochsensitiven MEMS Gradienten Magnetometer ermöglicht.
Diese Prozedur steigert nicht nur die Produktivität, sondern ist auch material- und kos-
teneffizient.
Die ersten Versuche diese Problemstellung zu lösen wurden mit einem TCP-basiertem
Server und einer nativen Android Applikation unternommen. Schnell stellte sich heraus,
dass dies nicht die geforderten Echtzeitkriterien erfüllen kann. Diese Erfahrung resultierte
in einem Neustart des Projektes mit geänderten Anforderungen. Die Android App wurde
durch eine Webanwendung mit responsiven Design ersetzt. Dies erweitert nicht nur die
Anzahl der unterstützen Endgeräte, sondern bringt auch Vorteile in punkto Drittanbieter
Visualisierungsbibliotheken.
GRAMOC besteht letztendlich aus zwei Kommandozeilenprogrammen und einer Web Ap-
plikation. Das erste Kommandozeilenprogramm ist der Server, der die vom Sensor empfan-
genen Daten vorverarbeitet. Dieses Programm führt auch eine dynamische Datenanalyse
durch. Das zweite Kommandozeilenprogramm kümmert sich um die Datenspeicherung, da
alle Sensordaten in HDF5 Dateien gespeichert werden müssen, um eine nachträgliche In-
spektion der Daten zu ermöglichen. Beide Programme laufen auf einem Raspberry Pi 3
Model B. Das Client Programm ist eine Web Anwendung die dazu dient, Sensordaten visu-
ell darzustellen. Auch wird ein Formular zur Verfügung gestellt, um historische Sensordaten
aus den HDF5 Datein abfragen zu können. Die kabellose Übertragung von Daten erfolgt
über ein Wireless LAN Netzwerk, unterstützt durch ein eigens entwickeltes UDP-basiertes
Netzwerkprotokoll.
Die empfangenen Sensordaten werden mittels multipler Linear Regression analysiert. Dies
ermöglicht es, mechanische Parameter des Stahlbandes von den magnetischen Daten ab-
zuleiten.

x



Abstract

This diploma thesis introduces GRAMOC, a system that can help to effectively characterise
steel belts without halting the production lines. This is made possible by using a recently
invented MEMS gradient magnetometer to measure the magnetic field of produced steel
belts.
This new procedure not only increases productivity, but is also a lot more material and
cost efficient.
The first approaches to solving this problem were made using a TCP-based server and
a native Android application. It quickly turned out that this solution would not satisfy
the requested real-time criteria. This experience resulted in a project restart with changes
requirements. The Android application was replaced with a webapplication with responsive
design. This does not only extend the amount of supported devices, but also has some
advantages with regards to third-party plotting libraries.
GRAMOC ultimately consists of two command line programs and one web application.
One command line program is the server that processes the data that is received from
the sensor. This program also performs dynamic data analysis using this data. The second
command line program handles data storage, as all sensor data has to be saved to HDF5
files to allow further inspection. These two programs run on a Raspberry Pi 3 Model B.
The client program is a web application that visualises the received sensor data. It also
provides a form to the users to request historical sensor data from the HDF5 files. The data
is transmitted wirelessly via a Wireless LAN network supported by a specially developed
UDP-based networking protocol.
The received data is analysed using multiple linear regression. This analysis method allows
to predict mechanical parameters of the steel belt from magnetic data that is received from
the sensor.

xi



Chapter 1

Introduction

Industry is ever-changing. Especially people working in the information technology branch
know that, since these are the people that have to upgrade the current systems using
latest technology. The latest industry-changing milestone was the rise of the so-called
Industry 4.0, which combines regular mechanical processes with modern information and
communication technology.
Industry 4.0 is a term that was coined by the German government.1 It describes the
fourth industrial revolution. As explained in Im Wandel der Zeit: Von Industrie 1.0 bis
4.0, the first industrial revolution took place around 1800 with the rise of steam and
water-powered machines.2 One century later electricity heralded the start of the second
industrial revolution, production lines being one of the biggest milestones. Also division of
labour was first practiced. The third industrial revolution occurred with the invention of
computers, robots and computer automation. The fourth and final one basically just refines
the third revolution. This revolution includes the term cyber-physical systems, which are
systems that are controlled by computers, algorithms and sensors. This also means that
there has to be some kind of communication between these systems which happens mostly
over the internet. Figure 1.1 depicts this sequence of revolutions.

Figure 1.1: The four industrial revolutions that took place over the last centuries3

This drastic change means that many companies have to adapt to keep up with the compet-
ing companies that already have these technologies. Steel belt production companies are no

1MacDougall, Industrie 4.0 - Smart Manufacturing for the Future.
2Wuttke, Im Wandel der Zeit: Von Industrie 1.0 bis 4.0 .
3Roser, Industry 4.0

1



1. Introduction 2

exception. With the invention of a gradient magnetometer that can effectively characterise
steel belts, the foundation for this diploma thesis was laid.

1.1 Task

The task of this diploma thesis is to develop a system to read sensor data, process it and
visualise the results. Sensor data is continuously read from a highly sensitive MEMS gradi-
ent magnetometer. This data is structured as raw binary data and has to be processed by
the system. The processed data will also undergo statistical analysis to predict parameters
on the basis of this data. After this processing step the data has to be sent wirelessly to
a mobile app. This mobile app acts as the client-side of the system. The app visualises
the sensor data and its predicted parameters. The app should also offer a way of browsing
through historical data that was saved prior.

1.1.1 Requirements of GRAMOC

Server side requirements:
• Read data from a sensor
• Save sensor data for further inspection
• Predict mechanical parameters from sensor data
• Send data to clients
• Provide historical data to clients

Client side requirements:
• Visualise sensor data
• Provide a form for requesting historical data
• Visualise historical data

1.2 Existing Solutions

1.2.1 Steel Belt Quality Inspection

Currently there are no solutions for dynamic steel belt characterisation. All these measure-
ments have to be made manually.
The current procedure to inspect the quality of a steel belt is as follows: The first thing
that has to be done is to produce a roll of steel belt. To get the quality level of this product,
a sample has to be taken from it. There are two samples taken from each steel belt roll,
one from the start and one from the end. These two samples can now undergo quality
inspection procedures. The results from these tests can be used to assess the produced
steel belt. According to these tests, the parameters of the production machines can be
adjusted.
This procedure has a few major disadvantages. Firstly, if the product does not pass the
quality tests, the whole steel belt has to be discarded. Time and personnel are also two
big disadvantages. These quality tests are not only time consuming but they also require
special trained staff for conducting these inspections.

1.2.2 Handling Sensor Data

Currently there are a lot of solutions available that can plot sensor data. The majority
of these are even free. The one constraint that most of these solutions share is that the



1. Introduction 3

sensor has to be directly connected to the computer. As the sensor that is used for this
project sends its data over the network, almost all solutions are considered irrelevant. Also
some custom features are wanted that these programs do not offer. For example visualizing
historical data.

1.2.3 Plotting Real Time Data

Author: Nico Leidenfrost

As already mentioned there are a lot of solutions out there that can be used to plot sensor
data. But the one thing that these solutions mostly can not provide is real time plotting.
Static plots can be achieved in many different ways, with big amounts of data or just small
amounts, many plots combined or divided in separate plots and many more variations are
within the bounds of possibility. A lot of these solutions promote themselves with dynamic
data updates or streaming data. That just means that the data can be changed at runtime
and therefore some could say the data is displayed in real time. But real time can be
defined very differently. As one would say real time applications can update their data
once every second, others consider that the data must be updated within less than 20
milliseconds to achieve a high framerate. Most of the solutions available can handle the
former definition of real-time but nearly none of them can provide enough performance
for the latter. Another important point is the amount of data that one wants to depict,
because most of the already existing programs that can handle real-time are just powerful
enough to handle small amounts of data.

1.3 Outline

This diploma thesis is structured into two big parts. These parts can be seen as two
phases of implementation. Each phase is completely separate. The first phase is a more
experimental one as both authors were unfamiliar with these types of projects, so some
experience had to be made. At the end of this phase there was a big cut and the project
was restarted from the beginning. The second phase discusses the different approaches and
decisions that were made starting from this cut. The second phase was not only better
planned, but the decisions that were made, were mostly made out of experience from the
first phase.



Chapter 2

Real Time Systems

Author: Nico Kratky

2.1 Definition

Real-time systems (RTS) have one big constraint that normal computer programs don’t
have, time. Contrary to normal applications, where the correctness of data only depends
on the made computations, RTS also depend on the timing of these computations. This
time limit, that has to be adhered to, is also often called deadline. Types of RTS are mostly
differentiated between what happens when the deadline is not met. There are three basic
types of real-time systems.

2.1.1 Hard Real-time Systems

In hard real-time systems an overrun in response time will lead to failure.1 This can mean
big financial losses of even danger to life. An example for a hard RTS would be the ECU
(Electronic Control Unit) of a modern car. If the timing of the fuel injection or ignition
is not correct, the engine could fail and lead to a crash. Another example would be the
control unit for airbags. This unit has to constantly monitor the cars crash sensors and
decide whether to trigger the airbags or not. This system would have to fulfill the hard
criteria because if the airbags trigger to late, then human safety can not be guaranteed.

2.1.2 Soft Real-time systems

A soft real-time system still does have a deadline but it is not that big of a deal if it is not
met.2 There are some consequences to not meeting the time limit but they are tolerable.
A video-stream is a example for a soft real-time system. If some frames are not delivered
in time the video will stutter, but the content will still be delivered.

2.1.3 Firm Real-time systems

In firm real-time systems the data will be useless if the time limit is overrun.3 The data
will then be discarded. This is the type of RTS that GRAMOC can be associated with.

1Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications.
2Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications.
3Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications.

4



2. Real Time Systems 5

Author: Nico Leidenfrost

2.2 Programming Language

In the early days of computer programming, there were only a few programming languages
available. Today there is a broad variety of them ready to be used. The popularity of a
language can reach from only a few users to worldwide professional use. To create appli-
cations that are able to process streaming data in real-time, only a minority of languages
are considered useful. Reasons why some programming languages are used more often than
others are:4

• The high performance of the native implementation
• The ease of use
• The popularity and community support

2.2.1 Java

Java was a long time a major language for developing real-time web applications because of
their “Write once Run everywhere” principle. That is possible because of the Java Virtual
Machine(JVM). All the code written in Java is compiled to run inside this virtual machine,
therefore every system that can run the JVM, can also run the same Java code as all
the other systems. The client side web development was early replaced by Adobe’s Flash
project, since then Java is disabled per default in most of the web browsers.
Java did however find its place at the server side, the so called back-end, especially because
the Java Database Connectivity(JDBC) was developed in the early stages of Java and
enabled an easy way to interact with databases. One of the most important points why
somebody would use Java was because it is easy to integrate third-party packages as a
result of many available package management systems. Also the deployment of the finished
application was easier than the deployment of an application from their main competitor
C++.

Scala and Clojure

A variety of languages were designed to also run inside the JVM, two of the more popular
ones in real-time programming are Scala and Clojure. Both these languages can use Java
packages as they run in the same environment. Scala is mostly used for academic projects,
but as of their rich standard library it is also used in high performance server applications.
The distinction to Java is that Scala utilises features from functional programming lan-
guages although it is declared as a object-oriented language. Clojure is a dialect of Lisp
that can also make use of Java packages.

2.2.2 JavaScript

JavaScript is the most popular programming language in terms of web development, it is
supported by every browser and during the development every browser developer wanted
to have the fastest JavaScript engine. Thanks to that JavaScript is now incredibly fast
and capable of implementing web applications on its own. The only similarities between

4Ellis, Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data.



2. Real Time Systems 6

JavaScript and Java are the name, which was a marketing gag, and the syntax, because
they both inherit some parts of it from C/C++. Any other aspects of these two languages
are distinct from each other. JavaScript is a functional programming language which means
functions are treated the same way as data. In JavaScript a function can be assigned to a
variable and be passed to another function. A lot of JavaScript frameworks and libraries
rely on that feature. Since JavaScript quickly gained a lot popularity in the front-end
development it is also capable of running in the back-end, most of the time as a Node.js
server (see section 13.4 on page 52).

2.2.3 C/C++

These two languages are known for their efficiency and therefore are often considered to
be used within real-time projects. C is widely used in embedded system programming
while C++ is used in all kinds of programming. C++ is a superset of C, regardless of
that fact C is still used in low-level system programming because of the simplicity. C++
is more complex than C but it also offers features from object-oriented programming. C
as well as C++ were first introduced way before the other languages mentioned here,
therefore the developers had enough time to optimise the compilers for these languages,
which resulted in very efficient code at runtime. Since these languages are considered as
low-level programming languages, a developer can gain control over system resources more
easily and use them efficiently. This can also be seen as a huge problem when used by
people that do not have the required skills to use it correctly or people who exploit this
feature on purpose. High performance applications like video games, as well as real-time
applications rely heavily on C++ because of its performance.

2.2.4 Go

Go is a language developed at Google based on the C language but with mechanisms
included that provide concurrency. This language is still under development and therefore
the variety of available libraries and community support is not as great as with the other
languages. Nevertheless are the benchmark performance on web server development still
very good.

2.3 Data Transfer

In order to build an application that is capable of displaying sensor data in real-time, like
GRAMOC it is crucial to find the optimal way to transfer data from the server to the
client. There are many solutions to this problem, but two of them are especially popular
when it comes to real-time communication:

• Sever Sent Events
• WebSockets

2.3.1 Server Sent Events

Server Sent Events(SSE) were introduced in 2006 as a protocol to transfer data from a
server to a client.5 Before SSE was introduced many client server communications relied
on polling, a technique where the server was asked for new information by the client
in a constant interval. This technique obviously created an enormous amount of overhead,

5WHATWG, Server Sent Events.



2. Real Time Systems 7

because every time a request for new data was sent there had to be a new HTTP connection
established and afterwards destroyed. SSE was build to be efficient, it only creates one
HTTP connection where all the data from the server is pushed and then received by the
client through events. The biggest advantage of SSE is of course the long lived connection
between the server and the client, but there are also a few downsides of this protocol.
The main problem is that the communication is unidirectional, which means the client can
receive data from the server, but can not send any data back. Since GRAMOC relies on
bidirectional communication between client and server this method is unqualified to be
used in this project. A few use cases of SSE would be notifications, status updates or the
streaming of stock tickers.

2.3.2 WebSockets

In 2011 the WebSocket protocol was standardised by the RFC6455.6 WebSockets offer
instead of unidirectional communication like server sent events, bidirectional communica-
tion between server and client (see subsection 2.3.1 on the preceding page). WebSockets
communicate per default over port 80, therefore there are no problems with the firewall.
Unlike protocols before WebSockets perform a handshake on connection to upgrade the
connection. The WebSocket protocol is way more complicated than the SSE protocol, but
at the time of writing most browsers offer solid native WebSocket support and many li-
braries that implement WebSockets are existing and well maintained. The probably most
popular WebSocket library is called socket.io, this library is also used within GRAMOC
to communicate between the server and the client (see section 13.6 on page 52). Other use
cases of WebSockets would be applications that rely on bidirectional real-time updates like
games or chat applications.

6Fette and Melnikov, The WebSocket Protocol .



Part I

Implementation Phase 1

8



Chapter 3

Networking

Author: Nico Kratky

As sensor data is received over a network connection and should also be delivered to
clients wirelessly, a common way of communication had to be developed. This development
process resulted in GSDEP, GRAMOCs networking protocol. It is a TCP-based networking
protocol that is used for sending large amounts of sensor data.1

3.1 Data Flow

Figure 3.1 depicts the handshake performed by GSDEP that is based on TCP’s three-way
handshake. The client sends a synchronize (SYN) message to the server to let it know that
it wants to connect. If the server can accept new clients it returns an acknowledgment
message (ACK). The client then also returns this acknowledgment message to inform the
server that it is indeed connected. The connection now is established and data can be
transmitted.

Figure 3.1: TCP-like three way handshake performed on client connect

If a client wants to disconnect from the server it will send a disconnect message (FIN) to
the server. Before it actually disconnects, it has to wait for the server to finish cleaning
up and return the FIN packet. After the client has received this message, it can close the
connection and shut down. This procedure is shown in figure 3.2 on the next page.

1Postel, Transmission Control Protocol .

9



3. Networking 10

Figure 3.2: Two way handshake performed on client disconnect

3.2 Data Interchange Format

Messages have to be brought to a common format to be understood by all communication
partners. Therefore every transmitted message is prefixed with a header. This header in-
cludes additional information that is used by the receiving end to determine the size of the
payload (see section 3.5 on the following page), to differentiate between different kinds of
messages (see section 3.4) and to rebuild the message data to its correct data type. The
header consists of 8 bytes, 4 bytes to store the payload length, and 2 bytes each for data
type and channel. A example packet is illustrated in figure 3.3.

Figure 3.3: Structure and field sizes of a packed message sent with GSDEP

3.3 Commands

Commands are special message that are used to prompt the other end to do something.
These commands are used for two purposes. On the one hand they are used during the
connection establishment and termination phases, and on the other hand they are used to
request data or to stop data transmission. These commands are listed in table 3.1 on the
next page.

3.4 Channels

In the case of GRAMOC, where large amounts of data are received in short periods of
time, it is crucial to differentiate between communication data and sensor data in split
seconds. To accomplish this, 2 bytes are included in the message header. This field simply



3. Networking 11

Command Used by Meaning
SYN client Tells the server that a new

client is waiting for the con-
nection procedure

ACK server & client Tells the other end that it ac-
knowledges the previous com-
mand

FIN server & client Tells the other end that it will
disconnect

STD client Tells the server that a client
requests data

SPD client Tells the server that a client
does not want any more data

Table 3.1: Commands sent by one of the connection partners and what they do

contains numbers that represent different channels (see table 3.2). This information can
then be used by the client to tell apart these two types of data, without even analysing
the payload.

Channel Value
Communication 1
Data 2

Table 3.2: Channels used to distinguish between message types

3.5 Message framing

A common mistake that many developers make is to assume that TCP operates with
messages and that TCP can tell apart these messages2.3 Sadly this is not true as TCP
operates with continous streams of data. Therefore the differentiation of messages has to
be done by developers themselfs. This can be achieved in two ways. These procedures
are taken from the blog posts Message Framing and Understanding The Internet: How
Messages Flow Through TCP Sockets4.5

3.5.1 Delimiters

Sending

Using delimiters is probably the simplest solution. This can be done by sending a special
character between each message. This character can either be a character that does not
show up in actual messages (e.g. a Null character), or a character that is present in a
message. If the second approach is used, every message has to be run through an escaping
process which replaces these characters in the messages.

2Cleary, Message Framing .
3Skotzko, Understanding The Internet: How Messages Flow Through TCP Sockets.
4Cleary, Message Framing .
5Skotzko, Understanding The Internet: How Messages Flow Through TCP Sockets.



3. Networking 12

Receiving

Receiving delimited messages is relatively straightforward. The program knows that a
message has been fully read when it encounters a delimiter character. This message then
has to be passed to an unescaping function when a delimiter character is chosen that can
exist in messages.

3.5.2 Length Prefixing

Another method of message framing is to prefix each message with its length. When doing
so the format of this prefix has to be stated explicitly. In the case of GSDEP that is a 4
byte unsigned integer.

Sending

First, the message has to be encoded into its binary representation. To send this message,
the length followed by the binary encoded message simply has to be sent.

Receiving

Receiving one message is done by first reading into a buffer with the length of the length
prefix (in this instance the buffer would be 4 bytes long). Then the payload is read into
a second buffer with the just read length. When this buffer is full, one message has been
read.

3.5.3 Security Concerns

Whichever solution is chosen, each solution has to provide code regarding Denial of Service
(DoS) attacks. Wether a very big message length or large amounts of data without a
delimiter are received, both can result in Out of Memory Exceptions.



Chapter 4

Server

Author: Nico Kratky

A server is a computer program that supplies clients with services. The term server often
refers to the machine on which the program is running on. In this project the server has to
accomplish several tasks. It has to read data from the sensor that is used, and distribute
this data to clients. To do this it also has to manage clients and incoming connection
requests.

4.1 Raspberry Pi 3 Model B

The Raspberry Pi is a small single-board computer, developed by the Raspberry Pi Foun-
dation.1 Originally it was created to teach children how to use computers and more impor-
tantly, how to program them. The biggest advantage of these mini-computers is the variety
of extension possibilities. These extensions are so-called HAT’s (Hardware Attached on
Top) or Shields (which is a term that is more often used when talking about Arduinos).
They are connected by using the on-board General-purpose input/output (GPIO) pins.
They mostly provide additional hardware to extend the application possibilities and to
achieve the desired goal. Further advantages are its relatively small footprint, low cost and
wide-variety of available Linux distributions. Having these advantages was the decisive fac-
tor for choosing the Raspberry Pi. In this project the latest available version, which is the
Raspberry Pi 3 Model B, was used. Specifications of this computer are listed in table 4.1.

SoC Broadcom BCM2837
CPU 4x ARM Cortex-A53, 1.2GHz
GPU Broadcom VideoCore IV
RAM 1GB LPDDR2 (900MHz)
Networking 10/100 Ethernet, 2.4GHz 802.11n wireless
Bluetooth Bluetooth 4.1 Classic, Bluetooth LE
Storage microSD
GPIO 40-pin header, populated
Ports HDMI, 3.5 analogue audio-video jack, 4x USB 2.0, Ethernet, Camera

Serial Interface (CSI), Display Serial Interface (DSI)

Table 4.1: Raspberry Pi 3 Model B specifications

1Raspberry Pi Foundation, Raspberry Pi .

13



4. Server 14

Figure 4.1: Raspberry Pi 3 Model B2

4.2 Raspberry Pi SenseHAT

The SenseHAT was made especially for the Astro Pi mission, where students could create
and code projects, which were then run on the International Space Station by astronaut
Tim Peake.3 This board was chosen because it offers a wide variety of sensors and therefore
offers many possibilities in terms of testing GRAMOC. Figure 4.2 on the following page
shows a SenseHAT that is not attached to a Raspberry Pi.
The Raspberry Pi Sense HAT includes following sensors and inputs/outputs:4

• ST LSM9DS1 Inertial measurement sensor

– 3D accelerometer
– 3D gyroscope
– 3D magnetometer

• ST LPS25H barometric pressure and temperature sensor
• ST HTS221 relative humidity and temperature sensor
• Alps SKRHABE010 5-button mini-joystick
• 8x8 RGB LED matrix

Although GRAMOCs main task is to charactarise steel belts using a magnetometer, a
Raspberry Pi SenseHAT add-on board was used to get sensor data. It was dicided to use
the now available accelerometer to perform measurements because it is easier to control
the sensor data than by using the magnetometer. Different sensor values can be generated
by simply moving around the Raspberry Pi with the attached SenseHAT.

2reichelt elektronik, Raspberry Pi 3 Model B
3Astro Pi Mission.
4Raspberry Pi Foundation, Raspberry Pi SenseHAT .



4. Server 15

Figure 4.2: Raspberry Pi SenseHAT5

4.3 Implementation

The server program of GRAMOC is completely written in Python. This allows for great
compatibility as Python comes preinstalled on many systems.

4.3.1 Programming Language

Python is a simple yet powerful modern programming language and supports both procedure-
oriented as well as object-oriented programming. It was developed by Guido van Rossum
at Centrum Wiskunde & Informatica (CWI) in the Netherlands in 1989 and first released
in 1991.6 It was meant to be a successor to the ABC programming language. Python is
a high-level language and therefore includes features such as automatic memory manage-
ment.
Python is currently available in version 3.6.2. Nevertheless version 2.7 is still available as
the Python Software Foundation announced that it will be supportet until 2020, effec-
tivly making it an Long-term support version. Despite that, Python 3.6.2 was chosen for
GRAMOC as the Foundation also encourages users to use the newest version if possible.
Another reason for choosing the newer version is that GRAMOC does not have to be
backwards compatible to any existing software.

4.4 Program Flow

As depicted in figure 4.3 on the next page, the server starts accepting new connections right
after is has started. It then performs the handshake that is required by GSDEP (further
explained in 3.1 on page 9). If this handshake is performed without errors, the server starts
listening for data from this now connected client on a separate thread. While this thread
is running it receives one message and checks if it is a command (see 3.3 on page 10). If
it is, the message is interpreted and the appropriate function is executed. This thread is
kept alive until the client disconnects or the server is shutdown by the user.

5reichelt elektronik, Raspberry Pi Sense Hat
6Tulchak, History of Python.



4. Server 16

Figure 4.3: Flowchart of server program showing the procedure



Chapter 5

Android

Author: Nico Leidenfrost

Android is a linux distribution and is currently developed by the software giant Google.
Android is an operating system with primary focus on mobile devices with a built-in
touchscreen. The most popular examples, in which Android is used, would be smartphones
and tablets. Since Android is an open source project, developers all over the world can
contribute to it and even build their own Android system. Android programs are called apps
which is the short version of application, these applications extend the basic functionality
of an Android device.

5.1 History of Android

Android started as a startup Company under the name Android Inc., founded in October
2003, in the US city Palo Alto, California. At first its purpose was to serve as an operating
system for digital cameras, that would be more advanced than the standard in 2003. One
Year later in 2004 they changed their goals to focus on mobile phones instead of cameras
because the market declined their approach. Google became aware of this company and
acquired it in July 2005 along with its founding members. The first working prototype of
an Android smartphone looked quite similar to a BlackBerry phone of the time, because it
had the BlackBerry typical QWERTY keyboard. They made two versions of this prototype,
both without a touchscreen. In 2007, Apple introduced the iPhone which already featured a
touchscreen. Since then Google also focused on mobile devices that included a touchscreen,
but also stated that a touchscreen could never fully replace physical buttons. The first
officially sold Android smartphone that was the HTC Dream, launched in 2008. Google
continued to maintain the Android project and launched many updates which introduced
new features or just fixed existing bugs. The developers of Android did choose a quite
funny naming scheme for their major releases, namely the names of desserts. Each version
starting with ongoing letters from the alphabet starting with Cupcake as the name for
version 1.5. After that came version 1.6 called Donut up to 7.0 as Nougat and the latest
version 8.0 as Oreo. Google explained this naming scheme with the statement, “Since these
devices make our lives so sweet, each Android version is named after a dessert”.

5.2 Design

Material Design is Google’s visual design language that was first introduced in 2014. The
goal was to develop a single underlying system that allows for a unified experience across all

17



5. Android 18

kinds of devices. It tries to support visual elements with the characteristics of real materials,
hence Material Design. These guidelines help the users to interact and quickly understand
different kinds of User Interface (UI) elements by using familiar tactile attributes.
GRAMOC’s Android app uses these design principles for the user interface as shown in
figure 5.1

Figure 5.1: Screenshots of App

5.3 Overview of Android Application Development

Applications are often abbreviated as apps. To write Android apps one must use the An-
droid software development kit (SDK). The variety of programming languages that can be
used is not very broad, so a developer must choose one of a few options to build a native
Android app.



5. Android 19

5.3.1 Java

Java is the most commonly used programming language to develop Android applications.
The majority of apps and libraries are written in Java. These apps are compiled to bytecode
which then will be translated to native instruction by the Android Runtime (ART). ART is
an application runtime environment that replaced its predecessor Dalvik, a process virtual
machine developed to run Android applications. Java was chosen to be the programming
language to build the Android application in this project because of the broad variety of
third-party libraries and support available.

5.3.2 C/C++

With C or C++ code and the Android native development kit (NDK), a native library
for Android, applications can get much better results in terms of performance. The reason
behind this is that the C/C++ code does not need a virtual machine to be executed
(i.e. the code runs natively), therefore the performance of an application that uses C or
C++ code can be much higher than the performance of an app written only in Java.
Important is to mention that an Android application should not be written entirely in
C/C++ because all the UI still needs to be handled by the Android framework and that
is only available in Java. Since the Java native interface (JNI) handles the interoperability
of the two languages, which adds a lot of complexity to the application, it would be best
to only write functions that require a high CPU performance in C or C++ code.

5.3.3 Go

“The Go programming language is an open source project developed by a team at Google
and many contributors from the open source community”.1 This programming language is
supported although there are limitations to the application programming interfaces (API),
therefore it was not considered a reasonable option for GRAMOC.

5.3.4 Kotlin

Kotlin is a modern and powerful language, which is officially supported since May 2017
and solved various issues addressed with Java (e.g. Null references). Kotlin is interoperable
with Java which means an Android application can contain both Kotlin and Java code.
Kotlin was considered to be used in this project, but the fact that the official support was
only recently introduced leads to less available third-party libraries as in Java. This led to
the decision that Java was the programming language of choice.

5.3.5 Runtime

A runtime is needed to convert high level code written in languages like Java, into CPU
readable byte code. Compiled Java code can not run on any machine because the code is
compiled to Java byte code, which a CPU can not interpret. To run this Java byte code, the
Java virtual machine (JVM) is needed, because it translates the Java byte code into CPU
readable byte code. In Android however the Java code is compiled to Java byte code, then
compiled again to Dalvik byte code and then given to the runtime. Android implemented
a runtime called Dalvik, which was later replaced by the Android Runtime Environment.2

1The Go Project .
2Google, ART and Dalvik .



5. Android 20

Dalvik

The Dalvik Virtual Machine (DVM) was the first runtime used in Android. The DVM was
chosen instead of the JVM to be used in the early days of Android because it could perform
better when running multiple apps at once. Both virtual machines are quite similar to each
other, except the matter that the JVM is stack-based and the DVM is register based, which
means the DVM needs less instructions, but these must be more complex. At first Android
devices only had a small amount of memory available, therefore the just-in-time (JIT)
compilation of the DVM was a perfect concept because it resulted in a small memory
footprint. This was achieved by only translating and caching the chunks of byte code that
were needed to execute the next few steps of an application. So instead of compiling the
whole code of an application, only the parts needed were compiled.

Android Runtime Environment

The problem of having to few memory available was solved by the fact that the hardware
improved over the years. The primary focus of application developers changed from most
efficient way to use memory to improve performance and simultaneously decrease battery
usage. With that in mind the Android Runtime Environment (ART), which now uses
Ahead-of-Time (AOT) compilation, was created. First introduced in Android 4.4 and later
replaced Dalvik completely in version 5.0, ART increased the performance of Android
application by compiling the whole code at once at the time of the installation of the
app. This method improved startup time, battery consumption and overall performance,
because now the code does not need to be compiled during runtime.

5.4 Components

In order to build this Android application following Android components were used:

• Intent
• Toolbar
• Activity
• Service
• NavigationDrawer
• Threads

5.4.1 Intent

“An intent is an abstract description of an operation to be performed”.3 It handles the
execution of a specific action that it takes along with data to operate on. It is most used
when launching a new activity.

5.4.2 Toolbar

This component is a widget from the Android appcompat support library and is persistent
throughout the whole application. Most of the time it is referred to as app bar or action
bar. Since this element is persistent, it will be used to perform important actions, like
searching or navigating, but also to create space for identification of an application.

3Google, Android Intent .



5. Android 21

5.4.3 Activity

“An activity is a single, focused thing that the user can do.”4 Each application starts with
launching an activity, therefore an activity handles the creation of a new window and
loads all the User Interface (UI) elements. Activities are usually shown as a full-screen
window, but also as a floating window or even be embedded inside of another activity
by implementing an ActivityGroup. Inside the Android-system, activities are handled as
a stack, this means every time a new activity is launched, the Android system puts that
activity on the top of the stack and this activity becomes the running activity. The other
activities in the stack are placed below the active activity and therefore remain inactive.
An activity’s lifecycle can be understood as depicted in figure 5.2.

Figure 5.2: Flowchart showing the lifecycle of an Android-activity

5.4.4 Service

A service in Android can be compared to a daemon. It is a process that runs in the
background and therefore there is no need for a visual interface. Once started, a service
can persist in the background and is therefore not interrupted by switching applications.
To use a service within another component, it must bind the service to enable interprocess
communication (IPC). The most common application of a service is, handling network
connections. The lifecycle is defined as depicted in figure 5.3 on the following page.

4Google, Android Activity .



5. Android 22

Figure 5.3: Flowchart showing the lifecycle of an Android-service

5.4.5 NavigationDrawer

To navigate between the activities and views a navigation drawer was implemented. A nav-
igation drawer is a panel which is pulled from the left border of the screen to approximately
3 quarters of the screen width. It contains a header where general information is displayed
and a body which contains various navigation items. The navigation drawer is included in
the material design pattern, which is often used in Android application development, so
most Android apps provide a navigation drawer.

5.4.6 Threads

When an Android application component is launched and it is the first component of an
application, Android will start a new Linux process. If this application is already running
inside a process and a new component is launched or an action is preformed, Android will
execute this task in the main-thread of the application. Unless it is explicitly stated to
execute the operation in a new thread within this process. When working with threads in
Android two essential rules must be followed5 :

1. Do not block the UI thread
2. Do not access the Android UI toolkit from outside the UI thread

The reasons behind this two rules are quite simple. The point why the thread that contains
the user interface should never be blocked is simply because then, no events could be
dispatched, including events that update the UI itself. This would mean that the application
could not give any information to the user unless the operation which is blocking the thread
has finished. This is really bad, because the user could think that the application stopped
working. Accessing the UI toolkit from a thread other than the UI thread is also a bad
idea, since the UI toolkit is not thread-safe. This means if multiple threads would access UI

5Google, Android Processes and Threads.



5. Android 23

elements, race conditions could happen and therefore cause errors within the application. To
avoid such errors Android implemented different ways how to execute tasks asynchronously
in Android:

Extended Threads

The first way is to implement a subclass of the Java Thread class. If this solution is
chosen a developer must override the run method of the superclass. If the way of how a
thread handles certain situations needs to be changed or new functionalities needs to be
added, a developer should choose this method, otherwise the Runnable interface should be
implemented.

Runnable interface

Another method to accomplish asynchronous behaviour would be to implement the Runnable
interface when creating a class. To execute the tasks, an instance of this class needs to be
given to the thread which should execute the tasks. This way is preferred to use when run-
ning tasks which does not need modified thread behaviour. When tasks from a runnable
class are executed there is no need to launch a new thread for each task, instead they can
be executed on various threads.

AsyncTasks

AsyncTasks are implemented to move work to the background and then update the UI
accordingly. An AsyncTask is defined to execute blocking operations, therefore there will
be only one active AsyncTask at the same time. In order to perform an AsyncTask a cycle
of four tasks is executed, with following steps:

1. onPreExecute: executed on the UI thread before the task is executed.
2. doInBackground: executed on the background thread, here the background tasks

are executed.
3. onProgressUpdate: executed on the UI thread every time when publishProgress is

called in the background thread.
4. onPostExecute: executed on the UI thread when the background tasks are finished.

5.4.7 Libraries

The Android client was implemented using a small number of libraries:
• Android SDK

The standard libraries included in the Android platform itself.6

• GramocAlgorithm-client
The Java implementation of the GSDEP client developed along with this project.7

• MPAndroidChart
An easy to use but also powerful open source 2 dimensional chart library for Android.8

• android-about-page
This library allows to simply create an about page for your Android application.9

6Google, Android SDK .
7Kratky, Java implementation of the GSDEP Client .
8Jahoda, A powerful & easy to use chart library .
9Sakout, Create an awesome About Page for your Android App in 2 minutes.



5. Android 24

5.5 Implementation

The entry point of this Android application is called the MainActivity. When this Activity
starts a background service is additionally started, which is basically a wrapper for the
GSDEP client, therefore it handles all the networking related tasks within the app. The
service will be bound to the active activity, so every time another activity is launched the
service will be unbound by the current activity and newly bound by the starting one. The
MainActivity’s goal is to give the user an easy way to connect to the server. Once the
application successfully connected to the server, a new activity responsible for plotting the
received sensor data will be launched, whether the 2-dimensional or the 3- dimensional
plotting activity is launched depends on the selection made in the NavigationDrawer,
by default the 2-dimensional plotting activity will be launched. When the 2-dimensional
plotting activity is launched the networking service will be bound and three LineCharts
contained within the library MPAndroidChart will be created and properly set up. After
these tasks are finished and the activity is ready to receive data, the server will be notified.
Now each data set received will be added to the data buffer of the respective chart. If the
buffer of a chart is full, the values at the end will be truncated until there is enough space
to add the new values. The 3-dimensional plotting activity however was not implemented
at all, since the Android application was discontinued because of problems that appeared
during the development of the 2-dimensional activity (see chapter 6 on page 26).



Part II

Lessons Learned

25



Chapter 6

Problems

Author: Nico Leidenfrost

After extensive testing as described in section 6.5 on the following page, it was decided
that this approach will not lead to a successful project outcome. This decision was made
while taking several factors into consideration.

6.1 Android

Android is a great platform to create simple and even complex application systems that
does not rely on heavy performance. Since the key element in this project is the ability to
display the sensor data in real-time, the Android development was discontinued due to the
performance issues that come with it.

6.2 Software limitations

Android is designed to render the UI with 60 frames per second (fps), which results in
redrawing frames every 16 milliseconds at best. The task of drawing frames will be executed
by the main thread along with many other operations like system events, input events,
application callbacks and so on. The system tries to update the screen every 16 milliseconds,
if however other operations than the redrawing of the screen are pulled from the work
queue when trying to update the screen, these frames will simply be dropped and users
will experience lacks of smoothness while using the application. To be sure about how much
milliseconds the rendering of one packet takes the time was stopped. The results showed
that it took up to about 50 to 60 milliseconds to render one update. These measurements
were the prime factor that led to the decision to discontinue the work on Android.

6.3 Plotting Libraries

There are a lot of freely available plotting and charting libraries to use in Android de-
velopment. Unfortunately most of them do not meet the requirements to be used in this
project. There are many good libraries to plot 2 dimensional charts like pie charts or bar
charts, but there is a lack of libraries that can display scientific plots (e.g. surface plots).
The libraries that would meet all the requirements however are not originally designed to
be used in Android development and therefore work only in specific versions of Android or
do not work at all because they rely on components that are not available in Android.

26



6. Problems 27

6.4 Networking

The first approach of transmitting sensor data to the plotting application was the GSDEP
protocol (see chapter 3 on page 9). The goal of this protocol was to send sensor data reliable
to clients such as the GRAMOC Android application. As it was meant to send data reliable,
the TCP/IP stack was used as underlying technology1.2 This approach worked well with
small amounts of data, but since GRAMOC requires to send an enormous amount of data
this approach failed, because the data was stuck in a buffer and could not be displayed in
real-time.

6.5 Tests

The two main test factors that lead to discontinuing the Android development in conjunc-
tion with the GSDEP protocol are:

• The time of one chart update
• The time to empty the data buffer

6.5.1 Update Test

This test was used to determine the redraw or update performance of the Android applica-
tion. To measure the time that one full update took, the timestamps of the start and end of
an update circle were taken. The start time was then subtracted form the end time and the
result was the time of one update cycle. These durations were measured in milliseconds.
Results showed that one update took 50 to 60 milliseconds, that corresponds to 16 to 20
frames per second (fps). The goal was to achieve a smooth experience with about 50 to 60
fps and thats far away from what the test results revealed.

6.5.2 Buffer Test

During the testing phase it occurred that the displayed data values did not match the
given data input at the time. Also the application kept displaying new data after the sensor
stopped transmitting. These anomalies indicated that the huge amounts of data could not
be plotted in real-time and ended up in a buffer. To measure the time it took to fully empty
the buffer of the not drawn data, the sensor was constantly sending data for about five
minutes and then stopped. The time between the sensor stopped transmitting data and
the last chart update was taken and evaluated. The results showed that the application
stopped updating the chart roughly about two minutes after the sensor stopped sending
new data. Based on this test the whole networking stack was rebuild on top of UDP to
achieve the desired speed.

1Postel, Transmission Control Protocol .
2Postel, Internet Protocol .



Chapter 7

Résumé

Author: Nico Kratky

After researching alternatives that still fit the purpose of GRAMOC, a meeting with the
client was arranged to discuss these alternatives. This meeting resulted in new goals and
expected results. This new project specification now includes a web application instead of
the mobile Android application.

7.1 Advantages

The switch to developing a web application still offers a few advantages that were not
existing while focusing on a Android application. This includes the flexibility that a web
application can run on basically any device the end user wishes. As of today many de-
vices support network connections and can run a web browser. Another advantage is that
JavaScript offers a tremendous amount of third party libraries, especially plotting libraries.
A few of these libraries even support scientific plotting, like for example VTK, the visual-
isation toolkit that is used by ParaView.1

7.2 Disadvantages

The change of specifications also brings some disadvantages with it. For example the whole
networking stack has to be rewritten because raw TCP streams are not supported in web
environments. They were replaced be the WebSocket technology.2 Also a new third-party
plotting library has to be chosen and read up on.

1Kitware, Visualization Toolkit .
2Fette and Melnikov, The WebSocket Protocol .

28



Part III

Implementation Phase 2

29



Chapter 8

Software Architecture

Author: Nico Kratky

After studying lots of literature about real-time systems, a new fundamental software ar-
chitecture was developed. The main principle of this is to seperate different tasks into
seperate processes. This makes use of the fact that the processed data is sent to the client
over the internet anyways. Therefore the process that handles data storage also acts as
a client. This leads to increased protability, and more important, increased performance.
Another perfomance increasing change is the use of C++ instead of Python as program-
ming language. This sofware stack is depicted in figure 8.1 and its components are further
introduced and discussed in the following chapters.

Figure 8.1: GRAMOC Software Architecture Diagram

30



Chapter 9

FaPS Networking

Author: Nico Kratky

FaPS Networking is a custom UDP-based library that is mainly used for communication
between FaPS (see chapter 10 on page 35) and different kinds of client, eg. FaPS-save (see
chapter 11 on page 38) and the Node.js server (see section 13 on page 50).

9.1 TCP vs. UDP in Real Time Environments

Both TCP and UDP are members of the transport layer of the internet protocol suite,
commonly known as the TCP/IP stack.1

9.1.1 Connection-Oriented and Connectionless Protocols

There are two groups of protocols. The ones that require setting up a logical connection
before data can be exchanged and the ones that don’t require a link between the two com-
munication partners. They are also called connection-oriented transport services (COTS)
and connectionless transport services (CLTS).2 The advantages and disadvantes of both
are important to know when choosing one of these types of protocols. The main feature of
COTS is that it is reliable, meaning that the protocol will ensure that sent messages are
received reliably and in order. As discussed in chapter 2 on page 4 it is not that big of a
deal for real-time applications if packets are dropped, therefor a CLTS was chosen.

9.1.2 Perfomance

As perfomance is a critical component of real-time applications, some research had to be
conducted to get the best possible result.
This research included the comparison of the packet headers. As seen in figures 9.1 on the
next page and 9.2 on the following page it is clearly visible that the TCP header is much
larger the the UDP header. In fact, TCP requires 20 bytes and UDP requires only 8 bytes
for the header information.

1Braden, Requirements for Internet Hosts - Communication Layers.
2Sun Microsystems, Inc., Transport Interfaces Programming Guide.

31



9. FaPS Networking 32

Figure 9.1: Header found in a TCP packet

Figure 9.2: Header found in a UDP datagram

TCP also has a built-in feedback mechanism which checks if all packets are received by
the communication partner and if they are received in order. This mechanisms not only
produces a lot of overhead, but also is the data most likely outdated when it is resent.
Therefore it is not a problem if such packets are dropped.
Considering all these factors the decision to use UDP over TCP was made. TCP is a great
protocol for example sending large files where it is necessary that all bytes come in order
and reliably. If one byte is missing then the whole file would be corrupt. UDP however is
a lot better for transferring time critical information as it produces less overhead.3

9.2 Handling Connections

As UDP is a connectionless protocols, neither does it know if the other end of the com-
munacation is ready to receive data nor if it is even existing. Therefor a way of handling
connections using UDP had to implemented.
The core of this implementation is a map. A map is a associative container that is available
through C++’s STL (Standard Template Library). This maps contains all clients as keys,
and the associated timestamps of the last received keepalive message as values.
After starting the server, two threads are started. The first one handles all incoming mes-
sages. If a received message is a keepalive message the timestamp of the client that sent this
message is update to the current time. The second thread monitors these timestamps. If
the difference between the current timestamp and the stored timestamp of a client exceeds
1.5 seconds, the client is declared disconnected and removed from the list.
Also when a client is instantiaed a thread is started to handle the keepalive messages. The
only task of this thread is to send a keepalive message to the server and then wait one
second. All of this is done in a loop that only finishes when the clients deconstructor is
called, thus disconnects.

3Cook, TCP vs. UDP for Real-Time Data Transfer .



9. FaPS Networking 33

9.3 Handshake

The handshake procedure is a very important part of connecting. This makes sure that the
server is notified whenever a client is waiting to connect.
When the server receives a connection request (see table 9.1 on the next page), it has to
check if it can accept further clients. This limit is set as a static constant in the Server

class. The default value is 8. If this check is successful the server sends an acknowledgement
message to the client. If the check fails, the client will receive a connection refused message.
In this implementation the clients connect call will block until it is connected. This is done
by a loop that will be exited once the server sends an acknowledgement. In between the
connection attempts one second is waited.
These two procedures can be both seen in the code listings ( 9.1 and 9.2) and the sequence
diagram ( 9.3 on the following page) below.

1 void Server::shake_hands(boost::asio::ip::udp::endpoint& remote) {
2 if (endpoints_.size() < MAX_CLIENTS_) {
3 // client limit not reached, new client can connect
4
5 send(control_messages["ACKNOWLEDGE"], remote);
6 // set the keepalive timestamp to now
7 endpoints_[remote] = std::chrono::system_clock::now();
8 }
9 else {

10 // too many clients connected, send connection refused message
11
12 send(control_messages["CONNECTION_REFUSED"], remote);
13 }
14 }

Listing 9.1: Server handshake method

1 void Client::connect() {
2 while (!connected) {
3 // retry connecting, until connection is accepted by server
4
5 send(control_messages["CONNECTION_REQUEST"]);
6
7 std::string reply;
8 receive(reply);
9

10 if (reply.compare(control_messages["ACKNOWLEDGE"]) == 0) {
11 // connection established, start sending keepalive messages
12
13 connected = true;
14
15 std::thread t_keepalive{&Client::keepalive, this};
16 t_keepalive.detach();
17 }
18 else {
19 // connection refused, try again in TIMOUT_ seconds
20 std::this_thread::sleep_for(TIMEOUT_);
21 }
22 }
23 }

Listing 9.2: Client handshake method



9. FaPS Networking 34

Figure 9.3: Handshake performed when a client tries to connect to server

9.4 Control Messages

Control messages are a special type of message that require further action to be taken.
These messages are especially important during the handshake. The supported messages
and their meaning and depicted in table 9.1.

Message Sent to Meaning
CRQ server Tells the server that a new

client is waiting for the con-
nection procedure

ACK client Tells the client that the con-
nection is acknowledged

CRF client Tells the client that the server
can not accept the connection

KAV server Tells the server that the client
is still alive and wants to stay
connected

Table 9.1: Commands sent by one of the connection partners and what they do



Chapter 10

Filtering and Preprocessing System

Author: Nico Kratky

FaPS, which stands for Filtering and Preprocessing System, is the main application of
the GRAMOC backend. It is an application that reads digital sensor output, preprocesses
it and forwards it to another process to distribute it to the final clients. It can also start
a seperate process to save the sensor data to HDF5 files.1 The data is also dynamically
analysed using regression analysis.
The preprocessing consists of regression analysis (see 14 on page 55 for further details.)

10.1 Command Line Interface

As FaPS is a command line program, arguments that are passed to it have to be parsed.
This is done by utilising Boosts Program_options.2 This module allows easy parsing and
exception handling.
The arguments that FaPS can handle are depicted in table 10.1 on the next page.

10.2 Data Storage

To be able to offer a possibility for further data inspection all received data is saved to
HDF5 files. This is done when both -s and -f parameters are supplied. If either of those is
supplied solely, a error is printed and FaPS exits. The data is saved by a seperate process
that acts as a client to FaPS. This seperate program is described in chapter 11 on page 38.

10.3 Data Processing

As the sensor data is received in a raw binary format, it has to be processed in order to
use it in a simple way.
One datagram that is received from the sensor is 1200 bytes long and consists of 600 shorts.
This data is in network byte order. By convention, network byte order is always big-endian,
which means that the most significant bit is placed first.3 The conversion of two bytes in
network byte order to a short is shown in code listing 10.1 on the next page.

1The HDF Group, HDF5 .
2Prus, Boost.Program_options.
3IBM, Network byte order and host byte order .

35



10. Filtering and Preprocessing System 36

Flag Argument Default value Description
-h, --help Outputs the usage informa-

tion
--version Prints version information
-l, --loglevel loglevel info Information granularity dur-

ing runtime
--ip ip_adress 127.0.0.1 IP address to which FaPS will

connect to read sensor data
--in-port port number 9760 Port to which FaPS will con-

nect to read sensor data
--out-port port number 1337 Port for the started UDP

Server
-s, --save path to faps-save Path to the faps-save exe-

cutable
-f, --filename filename Filename to which the data

will be saved
-p, --predict Enter predict mode
-c, --config filename Regression config file (only

needed when -p is supplied)
-d, --driver Driver ID 1 Only needed when -p is not

supplied

Table 10.1: Flags that can be set, which arguments they take, their default values and
what they do or change

1 short s = (((short) bytes[i]) << 8) | bytes[i+1];

Listing 10.1: Conversion of two bytes to a short

10.4 Data Serialisation

In order to send data so that the other end can interpret the message it has to be packed into
a common format. To do this JSON is used.4 It is a language- and platform-independent
data serialisation format originally specified by Douglas Crockford in the early 2000s.
JSON uses text a human-readable form and stores data in key-value pairs. Originally it was
derived from JavaScript but as of today many programming languages include methods and
functions to en- and decode JSON. This integration in JavaScript is the biggest advantage
for GRAMOC and ultimately led to the decision to use it in this project.

10.5 Data Distribution

Once preprocessing and serialization is finished, the received sensor data has to be dis-
tributed to connected clients. This is a typical use case for inter-process communication.

4Bray, The JavaScript Object Notation (JSON) Data Interchange Format .



10. Filtering and Preprocessing System 37

10.5.1 Unix Domain Sockets

Unix domain sockets are a way of communicating between a client and a server that are
on the same host. There are two types of sockets available: stream sockets (compareable to
TCP) and datagram sockets (compareable to UDP). Although this solutions seams ideal
for this, it was quickly decided against it. The reason for this decisions is that Node.js does
not support datagram unix domain sockets anymore and real time application usually make
use of datagrams. Therefore regular UDP was used.

10.5.2 Solution

This problem led to the decision to use a custom UDP protocol for data transfer. This
custom protocol is discussed in chapter 9 on page 31.

10.6 Storing Data Between Measurements

In order to continue the regression analysis after FaPS has been stopped and restarted,
a way of storing the regression analysis data had to be developed. This was achieved by
writing the data of the MLR class to a file. This process includes serialising the M matrix
and V vector (explained in section 14.1.3 on page 58) to arrays. The matrix is serialised
by creating a two dimensional array where the inner arrays represent the matrix rows. So

a

1 2 3
4 5 6
7 8 9

 matrix would become [[1, 2, 3], [4, 5, 6], [7, 8, 9]].



Chapter 11

Saving Sensor Data

Author: Nico Kratky

In order to be able to look up recent sensor readouts, all data that is received from the
sensor has to be saved in a persistent way. This chapter introduces the program that was
implemented to solve this task.

11.1 File Type

The Hierarchical Data Format (also called HDF) is a open source data format that allows
storing large amounts of heterogenous data. Heterogenous in this context means that each
entry in a dataset can itself be a complex type. This format is often used in scientific fields
because it is a very flexible format.
There are two very important terms that are used when dealing with HDF files. Groups
and Datasets.

11.1.1 Groups

A group is a container that can contain other groups and/or datasets. Datasets are often
stored in a group, but that does not mean that this has to be.

11.1.2 Datasets

A dataset is a the actual data that is contained. Datasets can contain multidimensional,
complex and heterogenous data.

11.1.3 Metadata

It is possible to associate every file, group or dataset with metadata. This makes HDF
self-describing.

11.1.4 HDF and HDF5

Although these two formats share a similar name, they are two completely different file
formats.
The biggest difference is that only HDF5 uses a true hierarchical structure similar to the
UNIX file system. Every object has to belong to one group. Only one group does not have
a parent group, the so-called root group. HDF uses a pseudo-flat structure using Vgroups.
Objects do not necessarily have to belong to a group and there is also no root group.

38



11. Saving Sensor Data 39

11.2 Structure

In this project the structure of the HDF file are kept rather simple.
Every file represents a measuring process. Files do not have any groups. Datasets are
identified by a number that represents a timestamp as microseconds since 1.1.1970 (also
known as Unix Time or epoch).

11.2.1 Example

A dataset recorded on 1.1.2018 00:00:00 would have the identifier 1514764800000000. This
dataset would contain a 6 dimensional integer array where each one would contain 100
values.

11.3 C++ Library

Although the HDF Group, which are the maintainers of the HDF project, offers a C++
API, it was decided against this library as it is quite complex. Instead a library developed
by the Blue Brain Project, called HighFive was used.1 This library allows for easy creation
and modification of HDF5 files.

11.4 Implementation

To save the sensor data to HDF5 files a seperate command-line program was developed.
This application acts as another client to FaPS, which transmitts the sensor data over
the network anyways. This approach yields two major advantages: Perfomance and hidden
complexity.
Perfomance is increased as FaPS can finish one iteration of its main loop faster as it does
not have to save the data and can carry on receiving data from the sensor.

11.4.1 Command Line Interface

As described in chapter 10 on page 35, Boosts Program_options were used in this project to
parse command line arguments. This program has only a few parameters that are depicted
in table 11.1 on the next page.

11.4.2 Compression

As GRAMOC handles a lot of sensor data a possibility to compress the datasets had
to be implemented. This is necessary because when measurements are perfomed over an
extended period of time, an enormous amount of datasets will be recorded. Therefore
readouts in a specified time frame are consolidated and stored in a mutual dataset. This
dataset’s ID is set to the timestamp of the first sensor readout that is stored in this dataset.
The timespan in which the data will be consolidated into one dataset can be set via the
--interval command line flag.

1The Blue Brain Project, HighFive - HDF5 header-only C++ Library .



11. Saving Sensor Data 40

Flag Argument Default value Description
-h, --help Outputs the usage informa-

tion
--version Prints version information
-l, --loglevel loglevel info Information granularity dur-

ing runtime
--ip ip_adress 127.0.0.1 IP address of FaPS
--port port number 9760 Port of FaPS
-f, --filename filename Filename to which the data

will be saved
-i, --interval seconds 1 Compression level

Table 11.1: Flags that can be set, which arguments they take, their default values and
what they do or change



Chapter 12

Webapp

Author: Nico Leidenfrost

After the conclusion that an Android application would not satisfy all the requirements
of GRAMOC, the decision to build a Web application was made. A so called Webapp is an
application that runs inside a web browser (e.g. Google Chrome) and is usually provided
by a web server. After a user connects to the web server, the user will get application files
and associated data. This enables the ability of a Webapp to be platform independent.

12.1 Framework

To create a modern Webapp a developer should choose a framework to build the web
application. A software framework can be classified as a huge software library. It provides
basic functionality like rendering content or routing between views in the context of a web
framework. The biggest benefit of a web framework is that the developer does not have to
reinvent the wheel, because a framework already implements the basic functionalities. Also
the majority of frameworks out there are open source, which means thousands of people
can help to enhance the project and also resolve issues. Therefore the user gains a solid
code base which is efficient, secure and usually well documented.

12.2 Vue.js

In the case of GRAMOC, a framework called Vue.js was used because of the convenience
compared to other big frameworks and the “simplicity and ease of use”, as stated in a blog
post published by the Frontend DC Lead of GitLab12.3 Another factor in choosing Vue.js as
the Framework for the GRAMOC web application was the performance compared to other
big Frameworks. A Benchmark application to measure the performance of the Frameworks
was created by Stefan Krause and is available on GitHub.4 The results are depicted below
in figures 12.1 on the following page and 12.2 on the next page.

1You, Vue.js.
2Schatz, Why We Chose Vue.js.
3GitLab, GitLab.
4Krause, js-framework-benchmark .

41



12. Webapp 42

Vue.js Angular React
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.2 1.23 1.25

Figure 12.1: Benchmark results: average slowdown in milliseconds

Vue.js Angular React
0

2

4

6

8

10

12

14

7

13.9

8.85

Figure 12.2: Benchmark results: average memory usage when running in MB

Although the performance of all three competitors is almost equal, Vue.js is slightly ahead
of the others. All these results lead to the decision that Vue.js will be used as the Web
Framework in GRAMOC.
In order to use Vue.js it is recommended by the developers to use webpack as module
bundler and Babel as JavaScript compiler, this can be done by using the vue-cli tool56.7 A

5webpack, webpack .
6Babel, Babel .
7vuejs, vue-cli .



12. Webapp 43

guide on how to create new Vue.js applications with this tool is available on the GitHub
page of the vue-cli tool.8

12.2.1 webpack

webpack is a module bundler for modern JavaScript applications, that builds a dependence
graph which includes every module needed to run the application. It packages all the needed
modules into several bundles which will be commonly served as static asserts.

12.2.2 Babel

Babel is a JavaScript compiler that is capable of converting up to date JavaScript code into
correct JavaScript code of a prior version. This is especially useful when a developer needs
to work in an environment where the most recent version of JavaScript is not supported,
but still wants to be able to write up to date JavaScript code.

12.2.3 Vue Instance

Every Vue.js application begins with the initialisation of a Vue instance, this is done by
calling the Vue function. In most of the cases the Vue instance is bound to an element
within the DOM, which usually is a div element with the id app. Since this part needs to
be done in Javascript, most of the time there is also a App component imported, which will
be the so to say main component of the application. This can be done by writing following
code:

1 new Vue({
2 el: '#app',
3 template: '<App/>',
4 components: { App }
5 })

Listing 12.1: Creating a Vue instance

12.2.4 Components

Components in Vue.js are very important and powerful because with this feature it is
possible to create custom elements that can be reused within the application. These com-
ponents contain three sections, first the template, which is basically the HTML part of
a component, second the script section, where all the JavaScript code is written and at
last the style section, to add custom styling to the component. These components are then
used like ordinary HTML elements in another template section or in the HTML code itself.
There are two ways to implement components, either the Vue.component function has to
be called to create a new component object, or all the components are separated into dis-
tinct .vue files. The latter method is preferred, especially in larger projects like GRAMOC,
because the code is much easier to maintain and it also solves some problems. For example
the scoped CSS styling is only possible when using single file components. In order to use
components, a build tool like Webpack or Browserify has to be used. The two ways of using
components are shown below.

8vuejs, vue-cli .



12. Webapp 44

1 <div id="app">
2 <hello-comp></hello-comp>
3 </div>
4
5 new Vue({
6 el: '#app'
7 })
8
9 Vue.component('hello-comp', {

10 template: '<div>{{msg}}</div>',
11 data: {
12 msg: 'Hello World'
13 }
14 })

Listing 12.2: Creating a Vue
instance and adding a
component to it

1 <template>
2 <div> <p>{{msg}}</p> </div>
3 </template>
4
5 <script>
6 export default {
7 name: 'name',
8 data () {
9 return { msg: 'Hello World' }

10 }
11 }
12 </script>
13
14 <style scoped>
15 p { color: red; }
16 </style>

Listing 12.3: Example for a
simple single file component

12.2.5 Router

Vue.js itself only supports single-page applications, but the Vue.js team is maintaining a
few core libraries that work in direct correlation to the base core system.9 This library
enables the creation of multi-page applications, through binding Vue.js components to the
individual routes. This is quite beneficial to this project, since GRAMOC supports a few
distinct core features, that are best displayed within a multi-page application. A router
can be created as shown in listing 12.4.

1 import Vue from 'vue'
2 import Router from 'vue-router'
3 import Home from '@/components/Home'
4
5 Vue.use(Router)
6
7 export default new Router({
8 mode: 'history',
9 routes: [

10 {
11 path: '/',
12 name: 'Home',
13 component: Home
14 }
15 ]
16 })

Listing 12.4: Creating a router instance with one Home route

12.2.6 WebSockets

WebSockets are used to communicate and rapidly sending data between the Webapp and
the web server. In GRAMOC a library called socket.io was chosen because of their focus
on reliable real-time communication (see section 13.6 on page 52). In order to use socket.io
within a Vue.js application the npm package Vue-Socket.io can be used.10 With this library,

9vuejs, vue-router .
10Seylan, Vue-Socket.io.



12. Webapp 45

a socket object can be created and attached to the Vue instance that needs to use the socket
connection.

12.3 Plotly

To visualise the data received from the sensor a graphing library called Plotly, more specific
the open source JavaScript library plotly.js is used11.12 Plotly is build on top of state of
the art JavaScript libraries like D3.js and stackgl13.14 The library offers a broad variety
of two and three dimensional charts in the categories statistical, financial, scientific and
more. In GRAMOC one of the chosen graphing libraries is Plotly, because of the capability
to easily create custom and dynamic charts.

12.3.1 Line Chart

To visualise the received sensor data in 2 dimensions, the line chart provided by Plotly was
implemented. This particular type of line chart was used to depict the saved sensor data.
For the real-time visualisation a D3.js line chart was implemented instead of a Plotly line
chart (see below subsection 12.4.1 on the following page). If the data does not need to be
depicted in real-time, Plotly has some advantages over D3.js. Plotly provides a rich set of
options to configure the behaviour and style of a chart. Plotly also provides some events,
to give the user the ability to interact with the chart. These events cover interactions like
clicking, dragging, zooming, scrolling and more. An example is shown in figure 12.3

Figure 12.3: line chart used to visualise sensor data in 2D and provide an interactive way
to analyse the data

In GRAMOC the Plotly line chart was configured to hold three traces, one for each axis as
shown in figure 12.3. The main focus of the Plotly library is to give the user a convenient
way to create interactive charts and not to provide high performance real-time charts.
These aspects fit best into the archive page of GRAMOC, where the source of the data are
static files and not real-time streams of data.

11Plotly, Plotly .
12Plotly, plotly.js.
13Bostock, d3.js.
14stackgl, stackgl .



12. Webapp 46

12.4 D3.js

The name D3 is an abbreviation of Data-Driven Documents, that is a very precise descrip-
tion of what this framework has to offer, namely the manipulation of documents based on
data. The goal of D3.js is not to visualise data on documents and at the same time be
able to handle all the things around the objects as well as implementing every imaginable
feature, it is build to be perfect at one thing: “efficient manipulation of documents based
on data”, as stated on their website.15 Since one of the key features of GRAMOC is real-
time representation of the data that is provided by a sensor, this framework was chosen to
be used within the real-time display. D3.js has advantages as well as a few disadvantages.
Probably the biggest advantage is that this framework is very lightweight. This means there
is only a minimal overhead and therefore it is very fast compared to other frameworks or
libraries like Plotly (see section 12.3 on the previous page). A disadvantage of D3.js would
definitely be the lack of convenient high-level functions to create or modify objects. This
lack of high-level functions leads to bigger development cost, because to implement simple
features it is necessary to write a lot of code compared to high-level solutions. In most
high-level frameworks a developer just needs to call one function to create a chart and
another one to add data to it. High-level functions are great to begin with, but to squeeze
every last bit of performance out of the code, low-level functions are much better. Also
to understand what is happening behind the code, low-level functions would be superior,
because the developer has to do nearly every step on his own and not just call a magic
function that does a lot of processing on its own. Therefore the lack of high-level functions
could be seen as an advantage, because programmers that use low-level functions instead
of high-level functions often have more knowledge about how the system works and that
is clearly a good thing.

12.4.1 Line Chart

In GRAMOC D3.js was used to create a simple line chart to be able to visualise scientific
sensor data in real-time. The chart is based on the line chart provided by Plotly, but with
the distinction that the D3.js chart can render the given data faster, and therefore sustain
the real-time support of the application. The design should be similar to the Plotly line
chart to maintain a uniform design within the application. The chart with example data
is shown below in figure 12.4.

Figure 12.4: line chart used to visualise sensor data in 2D and be able to render in real-time

15Bostock, d3.js.



12. Webapp 47

12.5 Implementation

As shown in figure 12.7 on page 49 the server asynchronously tries to connect with the
UDP socket and starts listening for incoming connections on a specified port. The server
keeps retrying to connect to the UDP socket until a connection is established. Without
this connection no live data from the sensor can be forwarded to the web application. If a
client connects on the before specified port the connection will be immediately upgraded to
a socket connection and the web application will be served to the user. When the Webapp
launches it will display the Home page, then the user can navigate to the 2D, the Archive
or the About page, through the navigation bar at the top.

12.5.1 2D Page

If the user navigates to the 2D page, a line chart created with D3.js will be loaded. This
chart consists of 3 traces, one for each axis of the sensor. The second chart displayed is a
density chart created with HTML5 Canvas. This chart is represented by an ellipse, which is
bent or stretched according to the received sensor data. Both these charts will be initialised
and then the client emits a message to the server to start receiving the sensor data. This
data will be used to update the charts accordingly. This page is responsible for visualising
the sensor data in real time and therefore its components are optimised to provide the
necessary performance. The exact procedure is shown in figure 12.5.

Figure 12.5: Flowchart of the procedure when 2D page is selected

12.5.2 Archive Page

The Archive page displays a line chart similar to the line chart on the 2D page, but with
the focus on convenience rather than real-time performance. Therefore, Plotly is chosen
to be used within this component. Along with the chart, a form will be available which
is responsible for requesting the already recorded sensor data selected by the user. The



12. Webapp 48

execution flow of this component is depicted in figure 12.6.

Figure 12.6: Flowchart of the procedure when Archive page is selected

12.5.3 About Page

The About page is simply a static page that displays a few informations about the project.



12. Webapp 49

Figure 12.7: Flowchart of web server and client program showing the procedure



Chapter 13

Web Server

Author: Nico Leidenfrost

To make a web application accessible to a user, there needs to be a web server which serves
the files to the web browser of the user. In the case of GRAMOC, NGINX was chosen to
be used as a web server.1

A web server is a server dedicated to provide information, web sites or web applications. To
achieve this goal the web server first transmits the files needed to run the web application
and then sends information whenever it is requested.

13.1 Apache

Apache HTTP Server was first launched in 1995.2 It gained a lot of popularity very quickly
and since April 1996 it is the most used web server of active websites. Apache’s approach
on how to handle incoming connections is quite simple: for each connection there is one
thread. This can lead to problems when a lot of clients are trying to connect to the server at
the same time. Apache consists of a core module and many dynamically loadable modules.
These modules provide various features like:

• Support for various programming languages
• URL rewrite
• Proxy functionality
• SSL support
• Authentication utilities

This module system gives Apache a lot of power in terms of flexibility, because there is no
need to use other systems as Apache itself is most often able to provide these features.

13.2 NGINX

NGINX, pronounced engine x, is a lightweight web server that was initially created to solve
the c10K problem. The goal of this challenge was to create a web server that is able to
handle ten thousand concurrent client connections at once. To achieve this goal, the main
difference between NGINX and its competitors is that NGINX handles client connections
asynchronously instead of synchronously. NGINX is also event driven and single threaded.

1NGINX, NGINX .
2Foundation, Apache HTTP Server .

50



13. Web Server 51

This means that there is only one thread running and not one thread per connection.
In GRAMOC, NGINX is used to provide only the core features of a web server, namely
providing static web application content and basic routing between the web server and
the Node.js server. Any other functionality will be passed to components that can handle
the specific tasks. NGINX was chosen over Apache because of its lightweight design and
speed. This is mainly achieved through passing on tasks to other programs and not trying
to handle everything on its own like Apache does.

13.3 Apache vs NGINX

According to Upguard, a cyber security company, NGINX is about 4.2 times faster than
Apache.3 The main reason for this is the single threaded, asynchronous approach of NG-
INX. Apache however contains a much larger feature set and better support, because of
the fact that Apache is a lot older than NGINX. The smaller feature set of NGINX can
be seen as a disadvantage, but also as an advantage. Less features are usually a clear dis-
advantage, but on the other hand if there are less features available, the system is much
more lightweight. That is one of the main reasons why NGINX was chosen in GRAMOC.
Due to this lightweight design, NGINX can operate also on systems with less computing
power, like the Raspberry Pi that is used in GRAMOC.
In terms of popularity Apache is at the time of writing twice as much used in web server
development as NGINX. These figures originate from the February 2018 Web Server Survey
conducted by Netcraft and are shown in figure 13.1.4

Figure 13.1: Survey results about most used web servers in currently active websites

These results show that Apache is still the number one web server with 42.72 percent
market share. Number two with 21.13 percent is NGINX. The trend shows that NGINX is
gaining more and more popularity as Apache slowly looses its market share. Below these
two main competitors there is Google’s in house developed web server, which they use for
their own services, and Microsoft’s IIS.

3Inc., Apache vs Nginx .
4Ltd., February 2018 Web Server Survey .



13. Web Server 52

13.4 Node.js

Node.js is an asynchronous, event driven JavaScript runtime, designed to build network
applications.5 The built-in HTTP module can be used to create a web server based on
Node.js. This module is used to utilise communication over the HTTP protocol. In terms
of GRAMOC the sensor data is received via a UDP connection and then transmitted over
HTTP to the web application. Therefore, the main task of the Node.js server is to receive
data which is emitted by the Filtering and Preprocessing Layer (FAPS) and forward it, to
the web application via WebSockets implemented through the socket.io library.6 In order
to use socket.io the HTTP module in combination with the express framework must be
used.
To implement an API (Application Programming Interface) to retrieve historical data,
also Node.js was used. The actual framework that was used to implement the API is called
Express (see below section 13.5).

13.5 Express

Express is a minimal and flexible web application framework to be used with Node.js. It
is build on top of the HTTP module provided by Node.js. Handling basic routing tasks
and creating powerful APIs (Application Programming Interfaces) are the main tasks of
the Express framework. Sometimes Express is mistaken to be a web server on itself, but it
is just a layer on top of a web server. Express was used to create the REST API used in
GRAMOC (see below section 13.7).

13.6 socket.io

socket.io is a JavsScript library that implements real-time communication via WebSockets.
This library was selected to be used within this project, because it aims to make real-time
applications possible in every browser. Socket.io is available for both Node.js and Vue.js.
The socket.io framework works well within GRAMOC, because GRAMOC also aims to
deliver sensor data in real-time.

13.7 REST API

GRAMOC also saves the incoming sensor data beside plotting it. This data is especially
useful to create statistics or if a user wants to inspect the sensor data of a certain point
of time. How the data is saved is further explained in chapter 11 on page 38. To make
the stored sensor data available to users, a REST API was implemented. REST means
Representational State Transfer, which is an architectural style. To call an API RESTful
it needs to satisfy a number of constraints:7

• Client-Server
• Stateless
• Cache
• Uniform Interface
• Layered System

5Foundation, Node.js.
6socket.io, socket.io.
7Fielding, “Architectural Styles and the Design of Network-based Software Architectures”.



13. Web Server 53

• Code-On-Demand

13.7.1 Client-Server

REST features a client-server model, like many other web based architectures. The main
concept of this model is that two clients can not talk directly to each other. Every client
needs to communicate with a server. If network units need to communicate with each other,
then every unit must implement a client and a server. This separation of client and server
can lead to better scalability of each component, as they are developed independently.

13.7.2 Stateless

A stateless system can not store data from clients to use this data in future requests. Each
request must contain enough information, so that the server is able to send an appropriate
response. This constraint leads also to improved performance as the server does not need
to store any contextual data about clients and is therefore able to process multiple requests
faster.

13.7.3 Cache

A response must be explicitly marked as cacheable or non-cacheable. If a response is marked
as cachable, it can be reused for future equivalent requests. This is useful if such cached
information can be reused at least one time, because then the client can simply use the
cached data instead of sending a new request to the server every time.

13.7.4 Uniform Interface

A REST API should have a standardised uniform interface in order to maintain the sim-
plicity of interactions. A resource in a system should only have one logical URI.

13.7.5 Layered System

In a layered system, every component can access only the layer next to it. This removes a lot
of complexity from the system, as a component just needs to interact with its neighbours.

13.7.6 Code-On-Demand

The last constraint within the REST architecture is the Code-On-Demand constraint which
is only optional. It allows an API to send executable code to the clients to extend their set
of features. This is used to create simple clients which can be dynamically extended after
deployment.

13.7.7 Implementation

In the GRAMOC REST API are only GET routes, as there is no need to change or modify
data. The available routes are listed in table 13.1 on the following page.



13. Web Server 54

Route Response
/files returns a list of files within the data directory
/files/:file/data returns the data of each dataset inside a file
/files/:file/datasets returns a list of datasets stored inside a file
/files/:file/datasets/:id returns the data of a specific dataset

Table 13.1: GET request routes of the REST API used in GRAMOC

The files are all stored in a specific directory from which the API can read. Inside these
files there are datasets, which represent time points. With this structure it is possible to
request the data from a specific timespan.

Pagination

Due to the large amounts of data, one request took longer to process than the timeout of
the web browser allowed. This problem was solved by using pagination. Pagination is a
technique to split the whole data from one big request into more smaller requests. These
requests can be processed much faster and therefore a response can be send in time. To use
pagination a query string with the parameters limit and page must be provided. The limit
indicates the maximum amount of data which can be transmitted by one response. The
page parameter specifies the offset of the data which has to be send. To check if another
page is available, every response contains a field has_more.



Chapter 14

Data Analysis

Author: Nico Kratky

14.1 Regression Analysis

Regression analysis is a statistical method to determine relationships between a response
variable y and one or more predictor variables xi, where i = 1, 2, ..., p. Linear regression
analysis assumes that these predictor variables are related linear to the response variable.

14.1.1 Simple Linear Regression

Simple Linear Regression is a regression model that can only build a relationship between
one predictor variable and one response variable. To find the best fit for this linear model
the Ordinary Least Squares method is used. The linear regression model builds a linear
function

y = k ∗ x+ d (1)

that represents the predicted values. This function can also be denoted as

y = β0 + β1 ∗ x, (2)

where β0 is the intercept and β1 is the slope of the line.
The two regression parameters,

β1 =

∑n
i=1(xi − x̄) ∗ (yi − ȳ))∑n

i=1(xi − x̄)2
(3)

β0 = ȳ − β1 ∗ x̄, (4)

that are used in this regression model are calculated using the least squares method. This
method tries to minimize the sum of squared residuals.

Example

A good example for linear regression analysis is the ringsize of women. This example was
taken from the website http://www.crashkurs-statistik.de1.2

1Crashkurs Statistik, Einfache Lineare Regression.
2Crashkurs Statistik, Multiple Lineare Regression.

55

http://www.crashkurs-statistik.de


14. Data Analysis 56

If somebody wants to know the ringsize of his girlfriend, but does not want to ask her, it is
possible to predict the size. To be able to do this a data basis has to be formed. A decisive
factor for someones ringsize is for example the body height.
The data, which is depicted in table 14.1 can be used to calculate the regression coefficients
using the formulae discussed in section 14.1.1 on the preceding page. These calculations
result in the two regression coefficients

β1 =

∑n
i=1(xi − x̄) ∗ (yi − ȳ))∑n

i=1(xi − x̄)2
= 0.2838 (5)

β0 = ȳ − β1 ∗ x̄ = 2.8457, (6)

which are slope and intercept, respectively.

Person i 1 2 3 4 5 6 7 8 9 10
Ringsize y 47.1 46.8 49.3 53.2 47.7 49.0 50.6 47.1 51.7 47.8
Height x 156.3 158.9 160.8 179.6 156.6 165.1 165.9 156.7 167.8 160.8

Table 14.1: Ringsizes of example persons and their body heights

After these calculations, the regression line can be plotted as shown in figure 14.1.

155 160 165 170 175 180

48

50

52

Height (x) in cm

R
in
gs
iz
e
(y
),
ci
rc
um

fe
re
nc

e
in

m
m

Figure 14.1: Ringsizes of women. The single data points represents the gathered data. The
red line depicts the regression line.

To predict a persons ringsize, two options are available. The first option, which is not as
accurate as the second one, is to simple read the predicted value from the regression line.
If, for example, a person is 165cm tall, the proper ringsize would be a little bit less than
50. To be more precise, the second option can be used, which is to calculate the size using
the regression coefficients. This can be done by applying the regression line to the height

y = 2.8457 + 0.2836 ∗ 165, (7)

which yields y = 49.64.



14. Data Analysis 57

14.1.2 Multiple Linear Regression

When the dependent variable depends on not just one variable, multiple linear regression
analysis is used. This method uses two or more independent variables to describe the
dependent variable. To calculate the regression coefficients the predictor variables have to
be put into a n× p matrix,

Xn,p =


1 x1,1 x1,2 · · · x1,p
1 x2,1 x2,2 · · · x2,p

1
...

...
. . .

...
1 xn,1 xn,2 · · · xn,p

 (8)

where n is the amount of datasets and p is the amount of predictor variables +1 because
the intercept also has to be calculated. Also, a vector of all response variables

yn =


y1
y2
...
yn

 (9)

has to be formed. These two matrices can be used to describe the basic multiple linear
regression model 

y1
y2
...
yp

 =


1 x1,1 x1,2 · · · x1,p
1 x2,1 x2,2 · · · x2,p

1
...

...
. . .

...
1 xn,1 xn,2 · · · xn,p



β0
β1
...
βp

 , (10)

where β are the regression coeffecients. Or shorter

y = Xβ. (11)

The problem with this equation is that it is possible that this equation does not have a
solution. Therefore the y and X matrices are multiplied with the transpose of X.

β̂ = (XTX)−1XT y (12)

This equation is always solvable, though not always exactly.

Example

With this in mind, the example from section 14.1.1 on page 55 can be extended by more
body parameters like weight and age, as they may also have an impact on the accuracy of
the regression model. Figure 14.2 depicts the ringsizes and body heights from the previous
example, plus the weight and age of these people.

Person i 1 2 3 4 5 6 7 8 9 10
Ringsize y 47.1 46.8 49.3 53.2 47.7 49.0 50.6 47.1 51.7 47.8
Height x1 156.3 158.9 160.8 179.6 156.6 165.1 165.9 156.7 167.8 160.8
Weight x2 62 52 83 69 74 52 77 65 79 51
Age x3 24 34 26 51 43 33 22 21 19 34

Table 14.2: Ringsizes of example persons and the appropriate body parameters



14. Data Analysis 58

This dataset can now be used to form the previously explained matrices.

X10,3 =


1 156.3 62 24
1 158.9 52 34
...

...
...

...
1 160.8 51 34

 (13)

y10 =


47.1
46.8
...

47.8

 (14)

Using the regression parameter formula (see equation 12 on the preceding page) we get the
regression parameters

β̂ = (XTX)−1XT y =


0.66
0.28
0.06
−0.02

 . (15)

Using these parameters it is now possible to form the regression function

y = 0.66 + 0.28 ∗ x1 + 0.06 ∗ x2 − 0.02 ∗ x3, (16)

which allows for data prediction.
In multiple linear regression analysis the predicted value can no longer be read off a graph,
as the line is multi-dimensional. Lets assume that a woman is 170cm tall, weighs 68kg and
is 29 years old. Inserting these values into the calculated model

y = 0.66 + 0.28 ∗ 170 + 0.06 ∗ 68 − 0.02 ∗ 29 (17)

gives us the predicted ringsize y = 51.76.

14.1.3 Working with Streaming Data

As GRAMOC uses streaming data a few adjustements had to be made. The ordinary mul-
tiple linear regression model assumes that all observations are available when calculating
the regression coefficients. Therefore a way of calculating these regression coefficients in
a streaming way had to be found. To accomplish this the regression parameters have to
be calculated incrementally. This means that the two parts of the regression parameter
calculation, XTX and XT y have to be recalculated every time a new observation is made.
These two matrices are then added up, since matrix addition between two n× n matrices
also result in a n × n matrix. The sum of these matrices are named M and V . This is
possible as XTX always returns a p × p matrix and XT y always returns a p-dimensional
vector.
When the regression coefficients are calculated,

β̂k = (M +Xk
TXk)−1(V +Xk

T yk), (18)

the sum of previous observation data is added to the current data, and then the procedure
described in 14.1.2 on the previous page can be applied.



14. Data Analysis 59

This procedure was introduced in a regression calculation programm called StreamFitter,
which also works with streaming data.3

14.1.4 r2 - Coefficient of Determination

r2 is the quotient of the explained variation

ESS =
n∑

i=1

(ŷi − ȳ)2 (19)

and the total variation

TSS =

n∑
i=1

(yi − ȳ)2, (20)

r2 =
ESS

TSS
(21)

It is a measure for how much variation of the data can be explained with this regression
model. r2 values are ranged between 0 and 1, where 1 is considered a perfect fit and 0 says
that no data can be explained using this regressino model.

14.2 Implementation

These procedures were implemented as a C++ class. The two most important meth-
ods from this class are void push(std::vector<double> X, double y) and double predict(std

::vector<double> X). The first method adds new observations to the model, and the second
one predicts the response variable from the given predictor variables using the current
linear regression model.
Code listing 14.1 on the following page shows the push method. Additionally to computing
the M and V values, this method adds the variables to a queue-like data structure. This is
necessary as the coefficient of determination needs the average of the response variable ȳ
and the last few datasets to test this fit (see 14.1.4). The size of this structure is set to 100.
This means that if the structure contains 100 datasets, the oldest one is removed before a
new one is inserted.

3Nadungodage et al., “StreamFitter: A Real Time Linear Regression Analysis System for Continuous
Data Streams”.



14. Data Analysis 60

1 void MLR::push(std::vector<double> X, double y) {
2 if (X.size() != p_) {
3 // not the correct amount of predictor variables
4 return;
5 }
6
7 // add observation to queue-like structure
8 // used for computing the coefficient of determination
9 data_.add(y, X);

10
11 // create a 1x(p+1) matrix
12 Eigen::Matrix<double, 1, Eigen::Dynamic> X2{p_ + 1};
13
14 // insert values into matrix
15 X.insert(X.begin(), 1);
16 for (std::size_t i{0}; i < X.size(); ++i) {
17 X2(0, i) = X[i];
18 }
19
20 auto X2T = X2.transpose();
21
22 M_ = M_ + X2T * X2;
23 V_ = V_ + X2T * y;
24
25 // inserting new observations invalidates the coefficients
26 coefficients_.clear();
27 }

Listing 14.1: C++ method to add new observations to the regression model

Code listing 14.2 show the predict method. This method initializes the result variable
with the line intercept and then adds up the products of the predictor variable and the
corresponding regression coefficient.

1 double MLR::predict(std::vector<double> X) {
2 if (X.size() != p_) {
3 // not the correct amount of predictor variables
4 return 0;
5 }
6
7 // start prediction with the intercept
8 double prediction = coefficients_[0];
9

10 // add each predictor variable with its coefficient
11 for (std::size_t i{0}; i < p_; ++i) {
12 prediction += coefficients_[i + 1] * X[i];
13 }
14
15 return prediction;
16 }

Listing 14.2: C++ method to predict the response variable using the passed predictor
variables

14.2.1 Coefficient of Determination

To calculation of the coefficient of determination in FaPS a queue-like structure had to be
implemented as the calculation formula needs the response variable, the predictor variables
and the predicted y value. As GRAMOC works with streaming data, not all data can be
stored for this calculation. Therefore only the last 100 values are stored.



14. Data Analysis 61

The implemented method is depicted in code listing 14.3.

1 double MLR::r_squared() {
2 // initialise variables
3 double ess{0};
4 double tss{0};
5
6 // get last 100 observations
7 auto data{data_.data()};
8 // calculate average y value from the last 100 observations
9 double avg_y{data_.average_y()};

10
11 for (std::size_t i{0}; i < data.first.size(); ++i) {
12 // calculate explained sum of squares
13 ess += std::pow(predict(data.second[i]) - avg_y, 2);
14
15 // calculate total sum of squares
16 tss += std::pow(data.first[i] - avg_y, 2);
17 }
18
19 // return coefficient of determination
20 return ess / tss;
21 }

Listing 14.3: C++ method to calculate the coefficient of determination

14.2.2 Matrix Calculations

As the mathematical side of regression analysis requires a lot of calculations to be made
using matrices and C++ does not have an equivalent to matrices, a third party library
had to be chosen to compensate this. After comparing several linear algebra libraries that
offer matrix calculations, it was decided to use Eigen.

14.2.3 Eigen

Eigen is a header-only C++ library, that was designed for doing basic linear algebra. This
include matrix operations, vector calculations and numerical solvers. Its benefits include a
very clean API which is fairly easy to use and a low memory overhead.
Perfomance-wise, Eigen is also better than its competitors.

Benchmarks

Figures 14.2 on the following page and 14.3 on the next page depict the computational
performance of Eigen. These two tests were done by computing the products of a matrix and
its transpose and a matrix and a vector. When multiplying a matrix with its transponse,
the GOTO BLAS library has a slight advantage over all matrix sizes but when multiplying
matrices with vectors even the older version of eigen outperforms all competitors.



14. Data Analysis 62

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10 100 1000

M
F

LO
P

S

matrix size

A x AT

’GOTO2’
’eigen3’

’INTEL_MKL’
’ATLAS’

Figure 14.2: A×AT Eigen Benchmark4

0

2000

4000

6000

8000

10000

12000

10 100 1000

M
F

LO
P

S

matrix size

matrixT x vector
’eigen3’
’eigen2’

’INTEL_MKL’
’ATLAS’

’GOTO2’
’ublas’
’gmm’

Figure 14.3: matrixT × vector Eigen Benchmark5

4Jacob and Guennebaud, Eigen - Benchmark
5Jacob and Guennebaud, Eigen - Benchmark



Chapter 15

Measurement Results

Author: Nico Leidenfrost

In order to test GRAMOC, a test scenario had to be created. As an abstraction to
the magnetometer, an accelerometer was used. The mathematical model to process the
accelerometer sensor data is the same as the one form the magnetometer data which is
ultimately used. The reason that a alternative had to be used is that the development of
the gradient magnetometer was delayed during the writing of this thesis. Also acceleration
is easier to influence without using scientific items.
To get example sensor readouts from the accelerometer, the sensor was mounted inside a
car.

15.1 Car Mount

To mount the GRAMOC setup in a car, the 12V DC on-board power supply had to be
inverted to 230V AC. This was necessary to power an access point as GRAMOC works
over an internet connection. The two Raspberry Pis were powered by a powerbank. The
Raspberry Pi that acted as sensor was taped to the arm rest of the car. This setup is
depicted in figure 15.1 on the following page.

15.2 Test Scenarios

To demonstrate the real-time plotting capabilities, a few scenarios were chosen in which it
is easy to understand the recorded data. These scenarios are:

• Shifting gears
• Driving in a roundabout
• Emergency braking
• Oversteering

As the used sensor is an accelerometer, the measured sensor data represent g-forces. The
x axis represents the forward acceleration of the car, the y axis represents the lateral
acceleration and the z axis represents the vertical acceleration. In the way the sensor was
positioned, positive values on the x axis represent forward acceleration and negative values
represent backward acceleration. Since the y axis displays the lateral acceleration, positive
values represent a right turn and negative values represent left turns.

63



15. Measurement Results 64

Figure 15.1: Car Mount of the Raspberry Pi accelerometer

15.2.1 Shifting Gears

The first demonstration scenario is shifting gears while driving. Every time a driver shifts
to another gear, the acceleration is interrupted. This short interruption is documented by
the red line, which represents the forward acceleration, in figure 15.2. It can be observed
that every time the driver shifts to another gear the line drops back to zero. The example
in figure 15.2 shows that the driver shifts 3 times from first to fourth gear.

Figure 15.2: Measured sensor data when shifting gears

15.2.2 Driving in a Roundabout

In the second scenario, a driver is driving through a roundabout. This scenario was chosen
to be used as an example, because it is a situation where the lateral acceleration is roughly
the same all the time. As shown in figure 15.3 on the next page, the forward acceleration
stays around zero the whole time and the lateral acceleration is located about -0.5g. The
reason why the acceleration remains stable the whole time is simply because when driving
through a roundabout, a driver should drive with constant speed and turn.



15. Measurement Results 65

Figure 15.3: Measured sensor data when driving in a roundabout

15.2.3 Emergency Breaking

Another scenario where acceleration can be easily shown is the case of emergency braking.
When a driver needs to stop his car immediately because there are for example people in
front of the car, there needs to be a massive amount of negative acceleration, depending
on the current velocity of the car. The acceleration force of such a maneuver is depicted in
figure 15.4. The example below shows a driver who is driving at a steady speed of 30 km/h
at first and then stops the car immediately. While braking the measured g-force reached a
maximum of -1.1g.

Figure 15.4: Measured sensor data when applying an emergency brake

15.2.4 Oversteering

The last scenario was chosen to show how a car behaves when it is temporarily out of
control. This could happened during oversteer caused by a wet street. As depicted in
figure 15.5 on the next page the forward acceleration is erratic, but above zero the whole
time during the oversteer phase. The green line which represents the lateral acceleration
fluctuates between 1.0g and -1.0g for a short duration, in the remaining time the line stays
below zero, due to the fact that the maneuver was applied in a left turn.



15. Measurement Results 66

Figure 15.5: Measured sensor data when oversteering

15.3 Regression Results

To test the multiple linear regression capabilities of GRAMOC, another test scenario had
to be created. During these tests, it was tried to predict the driver of the car using the
acceleration data from the sensor. It was decided to only use forward and lateral acceler-
ation, as the vertical acceleration mostly depends on parameters like road condition. To
link the acceleration data to the driven route a timestamp was taken as the third variable.

15.3.1 Course 1

The first test used a predefined route that is depicted in figure 15.6. This route was driven
by two sample drivers. One that drives rather quick and one slow driver. These drivers
were numerically represented by 1 and 2.

Figure 15.6: Satellite view of the test route. Image taken from Google Maps



15. Measurement Results 67

After completing the two runs, GRAMOC tried to predict the driver. As GRAMOC uses
streaming data, the prediction can not simply be shown at the end of the program, as this
would be too inaccurate. Therefore only the average prediction is shown after the program
finishes. The prediction data itself is still getting calculated in real-time. Also the minimum,
maximum and standard deviation of the average are calculated. The obtained results after
testing this with the driving style of the two sample drivers are shown in table 15.1.

Driving Style Prediction
1 1.4
2 1.8

Table 15.1: Prediction from the first regression testing phase

These predictions only allow to identify tendencies, but do not predict the driver precise
enough.
After researching thoroughly, it was decided to use a course that does not have long
straights as these were identified to mislead the regression model. This happens because
on long straights the car mostly reaches the speed limit of the road and then does not have
any acceleration. And no acceleration can not be matched with a driver.

15.3.2 Course 2

The second course had to be windy. The easiest way to get a lot of acceleration is to drive
through a roundabout. In a roundabout there will always be at least some acceleration, so
this was taken as the second course. For the sake of simplicity the roundabout that was used
in the first course (see figure 15.6 on the preceding page) was used as this test-roundabout.
The procedure was the same as in the first test, two drivers drive the roundabout at
whichever speed they like. After this two runs one driver drives again and GRAMOC tries
to predict him. This time, the results were much better as depicted in table 15.2.

Driving Style Prediction Standard Deviation
1 0.97 0.18
2 1.99 0.09

Table 15.2: Prediction from the second regression testing phase



Chapter 16

Conclusion

The key task of GRAMOC is to process and visualise sensor data. The visualisation hap-
pens in real-time, which means it is well suited for monitoring solutions. An important
feature of GRAMOC is the prediction of certain parameters, based on the input sensor
data. With this predicted values it is possible to use GRAMOC as a quality inspection
tool or as a tool to verify the status of certain events.

16.1 Applications of GRAMOC

16.1.1 Steel Belt Quality Inspection

The initial and main use case of the GRAMOC system is to verify the quality of steel
belts during production. With the gathered data from highly sensitive MEMS gradient
magnetometers, GRAMOC is able to predict the quality of steel belts. If the quality of
the steel belts can be predicted in real-time, it is no longer necessary to halt production
periodically to inspect a part of the steel belt to determine the quality. Without the need
to halt the production it is way more efficient than before.

16.1.2 Transport Driver Verification

Another possible use case of GRAMOC could be the verification of transport drivers. For
companies that employ drivers to transport any kind of cargo, it could be of interest to
know how the drivers are driving. Another concern for such companies is to know who is
driving their cars. For example, if a taxi driver is sick but does not want to loose his income
for the day, he could send a family member to do his work. To prevent such occurrences,
GRAMOC could be used to determine the driving profile of a driver and report the current
driver if the driving style does not match the given driving profile.

16.1.3 Sensor Monitoring

A very generic application of GRAMOC is the monitoring of multiple sensors at once.
GRAMOC could be used to create a dashboard for a broad variety of different sensors.
This system would best fit into an environment where a lot of sensors need to be monitored.
Such environments could be production lines or power plants. Especially in the case of a
power plant it is critical to know if every machine is working properly. Another benefit
that GRAMOC would add is a uniform design and user experience. If every sensor brings
it own monitoring system, it could be complicated for employees to operate every system

68



16. Conclusion 69

properly. GRAMOC could replace all of these systems and provide a uniform experience,
which would simplify the tasks of employees.

16.2 Outlook

Many systems to gather sensor data that are used in the industry today feature different
approaches for different sensors. The difference in how to control a specific sensor within
one system can lead to many difficulties. To resolve that problem and to remove these
difficulties, GRAMOC could be extended and implemented. Because with GRAMOC the
controls of each sensor could be centralised and therefore it would be much easier to operate
the whole system. But to use GRAMOC in such a large scale, it is necessary to implement
additional features like:

• Additional Types of Sensors
• Additional Visualisation Methods
• Additional Features

Additional Types of Sensors

In the future GRAMOC should support a broad variety of sensor types. GRAMOC features
abstraction layers, through which it is relatively easy to implement support for new sensor
types. With the addition of new sensor types the field of application grows and GRAMOC
could become a common solution to visualise sensor data.

Additional Visualisation Methods

If more sensors are included in the system, there will be at some point the need for more
features or ways how to visualise data. Data from certain sensors can not be properly
displayed in two dimensions. Therefore it will be necessary at some point to enable three
or more dimensional data representation. This would be one of the most prominent features
that need to be added in the future. Other important features than adding support for
more dimensions, will be support for different representations. Because certain sensor data
needs to be depicted in more than one representation to create relevant results.

Additional Features

Other features could be more advanced statistical analyses, or intuitive ways to interact
or convert the gathered data. The implemented multiple linear regression is only a first
step to fully automated statistical analyses, that could be realised within GRAMOC. With
the addition of more sensors, data could be predicted based on multiple sources which
could lead to greater accuracy. Also if users, most likely scientists, need to inspect the data
or display different representations of the data, it is necessary to implement functions to
transform the data.



Bibliography

Astro Pi Mission. Aug. 2017. url: https://astro-pi.org/about/mission/.

Babel. Babel. Nov. 2017. url: https://babeljs.io.

Bostock, Mike. d3.js. Nov. 2017. url: https://d3js.org.

Braden, Robert. Requirements for Internet Hosts - Communication Layers. RFC 1122.
RFC Editor, Oct. 1989, pp. 1–116. doi: 10.17487/RFC1122. url: https://www.rfc-
editor.org/rfc/rfc1122.txt.

Bray, Tim. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 8259.
RFC Editor, Dec. 2017, pp. 1–16. doi: 10.17487/RFC8259. url: https ://www.rfc-
editor.org/rfc/rfc8259.txt.

Cleary, Stephen. Message Framing. (Accessed: 08.17). Apr. 2009. url: https : / / blog .
stephencleary.com/2009/04/message-framing.html.

Cook, Matt. TCP vs. UDP for Real-Time Data Transfer. (Accessed: 05.01.18). Oct. 2017.
url: https://www.lifesize.com/en/video-conferencing-blog/tcp-vs-udp.

Crashkurs Statistik. Einfache Lineare Regression. (Accessed: 24.02.18). Jan. 2017. url:
http://www.crashkurs-statistik.de/einfache-lineare-regression.

— Multiple Lineare Regression. (Accessed: 24.02.18). July 2017. url: http://www.crashkurs-
statistik.de/multiple-lineare-regression.

Ellis, Byron. Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data.
1st ed. Wiley, July 2014. isbn: 978-1-118-83791-7.

Fette, Ian and Alexey Melnikov. The WebSocket Protocol. RFC 6455. RFC Editor, Dec.
2011, pp. 1–71. doi: 10.17487/RFC6455. url: https://www.rfc-editor.org/rfc/rfc6455.txt.

Fielding, Roy Thomas. “Architectural Styles and the Design of Network-based Software
Architectures”. (Accessed: 22.03.18). PhD thesis. University of California, Irvine, 2000.
url: https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Foundation, Apache Software. Apache HTTP Server. (Accessed: 22.03.18). Mar. 2018. url:
https://httpd.apache.org.

Foundation, Node.js. Node.js. Nov. 2017. url: https://nodejs.org.

GitLab. GitLab. Nov. 2017. url: https://about.gitlab.com.

Google. Android Activity. Aug. 2017. url: https : / / developer . android . com / reference /
android/app/Activity.html.

— Android Intent. Sept. 2017. url: https ://developer .android .com/reference/android/
content/Intent.html.

70

https://astro-pi.org/about/mission/
https://babeljs.io
https://d3js.org
http://dx.doi.org/10.17487/RFC1122
https://www.rfc-editor.org/rfc/rfc1122.txt
https://www.rfc-editor.org/rfc/rfc1122.txt
http://dx.doi.org/10.17487/RFC8259
https://www.rfc-editor.org/rfc/rfc8259.txt
https://www.rfc-editor.org/rfc/rfc8259.txt
https://blog.stephencleary.com/2009/04/message-framing.html
https://blog.stephencleary.com/2009/04/message-framing.html
https://www.lifesize.com/en/video-conferencing-blog/tcp-vs-udp
http://www.crashkurs-statistik.de/einfache-lineare-regression
http://www.crashkurs-statistik.de/multiple-lineare-regression
http://www.crashkurs-statistik.de/multiple-lineare-regression
http://dx.doi.org/10.17487/RFC6455
https://www.rfc-editor.org/rfc/rfc6455.txt
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://httpd.apache.org
https://nodejs.org
https://about.gitlab.com
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html


Bibliography 71

Google. Android Processes and Threads. Nov. 2017. url: https://developer.android.com/
guide/components/processes-and-threads.html.

— Android SDK. Aug. 2017. url: https://developer.android.com/reference/packages.html.

Google. ART and Dalvik. (Accessed: 27.03.18). Nov. 2017. url: https://source.android.
com/devices/tech/dalvik.

IBM. Network byte order and host byte order. (Accessed: 21.3.18). url: https://www.ibm.
com/support/knowledgecenter/en/SSB27U_6.4.0/com.ibm.zvm.v640.kiml0/asonetw.
htm.

Inc., Upguard. Apache vs Nginx. (Accessed: 22.03.18). Mar. 2017. url: https : / /www .
upguard.com/articles/apache-vs-nginx.

Jacob, Benoît and Gaël Guennebaud. Eigen - Benchmark. (Accessed: 20.3.18). Dec. 2016.
url: http://eigen.tuxfamily.org/index.php?title=Benchmark.

Jahoda, Philipp. A powerful & easy to use chart library. Aug. 2017. url: https://github.
com/PhilJay/MPAndroidChart.

Kitware. Visualization Toolkit. Sept. 2017. url: https://www.vtk.org.

Kopetz, Hermann. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. 2nd ed. Real-Time Systems. Springer, Apr. 2011. isbn: 978-1-4419-8236-0.

Kratky, Nico. Java implementation of the GSDEP Client. Aug. 2017. url: https://github.
com/nicokratky/GramocAlgorithm-client.

Krause, Stefan. js-framework-benchmark. Nov. 2017. url: https://github.com/krausest/js-
framework-benchmark.

Ltd., Netcraft. February 2018 Web Server Survey. (Accessed: 22.03.18). Mar. 2018. url:
https://news.netcraft.com/archives/2018/02/13/february-2018-web-server-survey.html.

MacDougall, William. Industrie 4.0 - Smart Manufacturing for the Future. Tech. rep. Ger-
many Trade & Invest, 2014.

Nadungodage, Chandima Hewa et al. “StreamFitter: A Real Time Linear Regression Anal-
ysis System for Continuous Data Streams”. In: Feb. 2011. doi: 10.1007/978-3-642-
20152-3_39.

NGINX. NGINX. Feb. 2018. url: https://www.nginx.com.

Plotly. Plotly. Nov. 2017. url: https://plot.ly.
— plotly.js. Nov. 2017. url: https://github.com/plotly/plotly.js.

Postel, Jon. Internet Protocol. RFC 791. RFC Editor, Sept. 1981, pp. 1–45. doi: 10.17487/
RFC0791. url: https://www.rfc-editor.org/rfc/rfc791.txt.

— Transmission Control Protocol. RFC 793. RFC Editor, Sept. 1981, pp. 1–85. doi: 10.
17487/RFC0793. url: https://www.rfc-editor.org/rfc/rfc793.txt.

Prus, Vladimir. Boost.Program_options. Oct. 2017. url: http://www.boost.org/doc/libs/
1_65_1/doc/html/program_options.html.

Raspberry Pi Foundation. Raspberry Pi. Aug. 2017. url: https://raspberrpi.org.
— Raspberry Pi SenseHAT. Aug. 2017. url: https://www.raspberrypi.org/products/sense-

hat/.

https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/reference/packages.html
https://source.android.com/devices/tech/dalvik
https://source.android.com/devices/tech/dalvik
https://www.ibm.com/support/knowledgecenter/en/SSB27U_6.4.0/com.ibm.zvm.v640.kiml0/asonetw.htm
https://www.ibm.com/support/knowledgecenter/en/SSB27U_6.4.0/com.ibm.zvm.v640.kiml0/asonetw.htm
https://www.ibm.com/support/knowledgecenter/en/SSB27U_6.4.0/com.ibm.zvm.v640.kiml0/asonetw.htm
https://www.upguard.com/articles/apache-vs-nginx
https://www.upguard.com/articles/apache-vs-nginx
http://eigen.tuxfamily.org/index.php?title=Benchmark
https://github.com/PhilJay/MPAndroidChart
https://github.com/PhilJay/MPAndroidChart
https://www.vtk.org
https://github.com/nicokratky/GramocAlgorithm-client
https://github.com/nicokratky/GramocAlgorithm-client
https://github.com/krausest/js-framework-benchmark
https://github.com/krausest/js-framework-benchmark
https://news.netcraft.com/archives/2018/02/13/february-2018-web-server-survey.html
http://dx.doi.org/10.1007/978-3-642-20152-3_39
http://dx.doi.org/10.1007/978-3-642-20152-3_39
https://www.nginx.com
https://plot.ly
https://github.com/plotly/plotly.js
http://dx.doi.org/10.17487/RFC0791
http://dx.doi.org/10.17487/RFC0791
https://www.rfc-editor.org/rfc/rfc791.txt
http://dx.doi.org/10.17487/RFC0793
http://dx.doi.org/10.17487/RFC0793
https://www.rfc-editor.org/rfc/rfc793.txt
http://www.boost.org/doc/libs/1_65_1/doc/html/program_options.html
http://www.boost.org/doc/libs/1_65_1/doc/html/program_options.html
https://raspberrpi.org
https://www.raspberrypi.org/products/sense-hat/
https://www.raspberrypi.org/products/sense-hat/


Bibliography 72

reichelt elektronik. Raspberry Pi 3 Model B. url: https://cdn-reichelt.de/bilder/web/xxl_
ws/A300/RASP_03_01.png.

— Raspberry Pi Sense Hat. url: https://cdn-reichelt.de/bilder/web/xxl_ws/A300/RPI_
SENSE_HAT_1.png.

Roser, Christoph. Industry 4.0. 2015. url: http ://www.allaboutlean .com/wp- content/
uploads/2015/11/Industry-4.0.png.

Sakout, Mehdi. Create an awesome About Page for your Android App in 2 minutes. Aug.
2017. url: https://github.com/medyo/android-about-page.

Schatz, Jacob. Why We Chose Vue.js. (Accessed: 05.11.17). Oct. 2016. url: https://about.
gitlab.com/2016/10/20/why-we-chose-vue.

Seylan, Metin. Vue-Socket.io. Jan. 2018. url: https : / / github . com/MetinSeylan /Vue -
Socket.io.

Skotzko, Androw. Understanding The Internet: How Messages Flow Through TCP Sockets.
(Accessed: 28.08.17). July 2015. url: https://andrewskotzko.com/understanding- the-
internet-how-messages-flow-through-tcp-sockets/.

socket.io. socket.io. Nov. 2017. url: https://socket.io.

stackgl. stackgl. Nov. 2017. url: http://stack.gl.

Sun Microsystems, Inc. Transport Interfaces Programming Guide. Oct. 1998. url: https:
//docs.oracle.com/cd/E19620-01/805-4041/805-4041.pdf.

The Blue Brain Project. HighFive - HDF5 header-only C++ Library. Jan. 2018. url:
https://github.com/BlueBrain/HighFive.

The Go Project. Aug. 2017. url: https://golang.org/project/.

The HDF Group. HDF5. Nov. 2017. url: https://www.hdfgroup.org.

Tulchak, L. V. History of Python. Tech. rep. Vinnytsia National Technical University, 2016.

vuejs. vue-cli. Jan. 2018. url: https://github.com/vuejs/vue-cli.
— vue-router. Jan. 2018. url: https://github.com/vuejs/vue-router.

webpack. webpack. Nov. 2017. url: https://webpack.js.org.

WHATWG. Server Sent Events. Jan. 2018. url: https://html.spec.whatwg.org/multipage/
server-sent-events.html.

Wuttke, Katharina. Im Wandel der Zeit: Von Industrie 1.0 bis 4.0. (Accessed: 20.02.18).
Sept. 2015. url: https://www.lmis.de/im-wandel-der-zeit-von-industrie-1-0-bis-4-0/.

You, Evan. Vue.js. Nov. 2017. url: https://vuejs.org.

https://cdn-reichelt.de/bilder/web/xxl_ws/A300/RASP_03_01.png
https://cdn-reichelt.de/bilder/web/xxl_ws/A300/RASP_03_01.png
https://cdn-reichelt.de/bilder/web/xxl_ws/A300/RPI_SENSE_HAT_1.png
https://cdn-reichelt.de/bilder/web/xxl_ws/A300/RPI_SENSE_HAT_1.png
http://www.allaboutlean.com/wp-content/uploads/2015/11/Industry-4.0.png
http://www.allaboutlean.com/wp-content/uploads/2015/11/Industry-4.0.png
https://github.com/medyo/android-about-page
https://about.gitlab.com/2016/10/20/why-we-chose-vue
https://about.gitlab.com/2016/10/20/why-we-chose-vue
https://github.com/MetinSeylan/Vue-Socket.io
https://github.com/MetinSeylan/Vue-Socket.io
https://andrewskotzko.com/understanding-the-internet-how-messages-flow-through-tcp-sockets/
https://andrewskotzko.com/understanding-the-internet-how-messages-flow-through-tcp-sockets/
https://socket.io
http://stack.gl
https://docs.oracle.com/cd/E19620-01/805-4041/805-4041.pdf
https://docs.oracle.com/cd/E19620-01/805-4041/805-4041.pdf
https://github.com/BlueBrain/HighFive
https://golang.org/project/
https://www.hdfgroup.org
https://github.com/vuejs/vue-cli
https://github.com/vuejs/vue-router
https://webpack.js.org
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://www.lmis.de/im-wandel-der-zeit-von-industrie-1-0-bis-4-0/
https://vuejs.org


Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

73


	Eidesstattliche Erklärung
	Diplomarbeit Dokumentation
	Diploma Thesis Documentation
	Kurzfassung
	Abstract
	Introduction
	Task
	Requirements of GRAMOC

	Existing Solutions
	Steel Belt Quality Inspection
	Handling Sensor Data
	Plotting Real Time Data

	Outline

	Real Time Systems
	Definition
	Hard Real-time Systems
	Soft Real-time systems
	Firm Real-time systems

	Programming Language
	Java
	JavaScript
	C/C++
	Go

	Data Transfer
	Server Sent Events
	WebSockets


	I Implementation Phase 1
	Networking
	Data Flow
	Data Interchange Format
	Commands
	Channels
	Message framing
	Delimiters
	Length Prefixing
	Security Concerns


	Server
	Raspberry Pi 3 Model B
	Raspberry Pi SenseHAT
	Implementation
	Programming Language

	Program Flow

	Android
	History of Android
	Design
	Overview of Android Application Development
	Java
	C/C++
	Go
	Kotlin
	Runtime

	Components
	Intent
	Toolbar
	Activity
	Service
	NavigationDrawer
	Threads
	Libraries

	Implementation


	II Lessons Learned
	Problems
	Android
	Software limitations
	Plotting Libraries
	Networking
	Tests
	Update Test
	Buffer Test


	Résumé
	Advantages
	Disadvantages


	III Implementation Phase 2
	Software Architecture
	FaPS Networking
	TCP vs. UDP in Real Time Environments
	Connection-Oriented and Connectionless Protocols
	Perfomance

	Handling Connections
	Handshake
	Control Messages

	Filtering and Preprocessing System
	Command Line Interface
	Data Storage
	Data Processing
	Data Serialisation
	Data Distribution
	Unix Domain Sockets
	Solution

	Storing Data Between Measurements

	Saving Sensor Data
	File Type
	Groups
	Datasets
	Metadata
	HDF and HDF5

	Structure
	Example

	C++ Library
	Implementation
	Command Line Interface
	Compression


	Webapp
	Framework
	Vue.js
	webpack
	Babel
	Vue Instance
	Components
	Router
	WebSockets

	Plotly
	Line Chart

	D3.js
	Line Chart

	Implementation
	2D Page
	Archive Page
	About Page


	Web Server
	Apache
	NGINX
	Apache vs NGINX
	Node.js
	Express
	socket.io
	REST API
	Client-Server
	Stateless
	Cache
	Uniform Interface
	Layered System
	Code-On-Demand
	Implementation


	Data Analysis
	Regression Analysis
	Simple Linear Regression
	Multiple Linear Regression
	Working with Streaming Data
	 r2  - Coefficient of Determination

	Implementation
	Coefficient of Determination
	Matrix Calculations
	Eigen


	Measurement Results
	Car Mount
	Test Scenarios
	Shifting Gears
	Driving in a Roundabout
	Emergency Breaking
	Oversteering

	Regression Results
	Course 1
	Course 2


	Conclusion
	Applications of GRAMOC
	Steel Belt Quality Inspection
	Transport Driver Verification
	Sensor Monitoring

	Outlook

	Bibliography


