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Kurzfassung

Das Gebiet der Robotik expandiert rasch und Spezialisten, die autonomes Mapping, au-
tonome Navigation und Sensorfusion durchführen können, sind äußerst gefragt. Die zugrun-
deliegenden Algorithmen, wie Kalman-Filter und die grafisch basierte simultane Lokalisierung
und Kartengenerierung, sind jedoch nicht auf dieses Gebiet beschränkt, sondern finden in
einer Vielzahl von Anwendungen ihren Einsatz. Diese Algorithmen werden von "primi-
tiven" Staubsaugrobotern, aber auch von großen Passagierflugzeugen und sogar in Satel-
liten verwendet.

Ziel dieser Diplomarbeit ist es, die grundlegenden Konzepte mobiler, bodengestützter
Roboter zu erforschen und eine Plattform zu entwickeln, auf der zukünftige Studenten
ihre Projekte aufbauen können. Insbesondere für Anfänger kann es sehr zeitaufwändig
sein, sich das nötige Wissen anzueignen. Der Bau eines Roboters mit den erforderlichen
Komponenten, Leistungseigenschaften und Batterielebensdauer ist ein komplizierter und
zeitaufwändiger Prozess. Aus diesem Grund besteht ein weiteres Ziel darin, eine Vielzahl
von Sensoren zu kaufen, zu testen und zu montieren und einen autonom navigierenden
Roboter zu entwickeln, der einen Bereich kartographiert und Objekterkennung zum Suchen
und Beschriften von Objekten verwendet.

Durch den Aufbau und die Erweiterung des ROS-Ökosystems konnten die Autoren
eine Reihe modernster Algorithmen auswerten und den Benutzern die Möglichkeit geben,
zu wählen, was für ihre jeweilige Situation das Richtige ist. Darüber hinaus wurde der
AUT-AS-Roboter mit einer Vielzahl von kostengünstigen Sensoren ausgestattet und deren
Funktionalität, Leistung und Grenzen analysiert. Durch die Integration mit dem Gazebo
Simulator können die Autoren und zukünftige Projekte die Abhängigkeit von einem ph-
ysischen Roboter reduzieren. Schließlich werden den zukünftigen Studenten umfangreiche
Dokumentationen und öffentlich zugänglicher Quellcode und Beispielanwendungen zur Ver-
fügung gestellt. All dies führt zu einer voll funktionsfähigen Plattform, auf der zukünftige
Studenten ihre Ideen testen und anderen Institutionen die Möglichkeit geben können, das,
was die Autoren entwickelt haben, auf kosteneffiziente Weise neu aufzubauen.
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Abstract

The field of robotics is rapidly expanding and specialists capable of performing autonomous
mapping, autonomous navigation and sensor fusion are in extremely high demand. The
underlying algorithms, such as Kalman filters and graph-based simultaneous localization
and mapping however, are not restricted to this field, but rather find purpose in a variety of
applications, ranging from "primitive" vacuum cleaning robots to large passenger aircraft
and even space satellites.

This diploma thesis aims to explore the fundamental concepts of mobile, ground based
robots and further develop a platform upon which future students can build their projects
on. Especially for beginners, it can be very time-consuming to gain the required knowledge,
that is necessary. Further, building a robot, that has the required components, performance
characteristics and battery life, is a complicated and time consuming process. For this
reason, another aim is to purchase, test and mount a variety of sensors, and develop an
autonomously navigating robot, that maps an area and uses object recognition to search
for and label, objects.

By building upon and expanding the ROS ecosystem, the authors were able to evaluate
a range of state-of-the-art algorithms and give users the possibility to choose, what is
right for their particular situation. Moreover, the AUT-AS robot was equipped with a
wide variety of low-cost sensors and the functionality, performance and limits of these
were analyzed. Furthermore, by integrating with the gazebo simulators, the authors, and
future projects, are able to reduce the reliance on a physical robot. Finally, extensive
documentation and publicly available source code and example applications are provided
to future students. All this results in a fully functional platform, that lets future students
test their ideas and gives other institutions the ability, to re-build what the authors have
developed, in a cost-efficient manner.

vii



Chapter 1

Introduction

Author: Alexander Lampalzer
Since the beginning of the 21st century, the amount of computational power in com-

puters has dramatically increased, which empowered many fields in computer science like
robotics. It has allowed for more efficient and much more complex tasks to be automated
by robots in a wide variety of different environments, such as the automotive industry.
Furthermore, the vast amount of openly available information and software in this field
has allowed newcomers to get started more easily and quickly.

1.1 Aim

This diploma thesis aims to show the challenges and opportunities encountered by the au-
thors when developing a mobile robot and also aims to act as a guide for younger students
to find inspiration and ideas for their own projects. The aforementioned robot, described in
this thesis, is equipped with several sensors, like depth cameras and 2D distance measure-
ment sensors, and programmed to perform autonomous navigation and 3D mapping of a,
for the robot, unknown environment. Additionally, a comprehensive platform for managing,
administrating and monitoring a fleet of autonomous robots is developed.

1.2 Features

If the mobile robot and the corresponding application are successfully developed, the fol-
lowing features must be implemented.
Robot:

• Autonomous 3D mapping of a previously unknown environment
• Autonomous navigation between different areas on the same ground level
• Creation of application specific maps (e.g.: Wifi strength, Temperature, etc.)
• Simulation of the mobile robot in a virtual, customizable environment

Application:

• Teleoperation of a selected robot
• Live view of robots sight
• Monitoring different components of one or more robots
• Administration of one or more robots

Based on the features stated above, the following use cases can be deducted:

1
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AUT-AS

Generate a map of the environment

Teleoperate robot

Display the robot’s video feed

Monitor robot-swarm

Show extended statistics

about a single robot

User

«extends»

«extends»

Figure 1.1: Use case diagram describing the core use cases.

1.3 The current state of robotics

According to an article published by the International Data Corporation (IDC) in 2017
the spending in the robotics sector is going to increase rapidly. The expected spending on
robotics hard-, software and services is projected to reach $230.7 billion in 2021 whereas
the spending in 2017 summed up to $97.2 billion which is an increase of 137% in four
years. This increase of market potential will generate new jobs which need to be filled by
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qualified and educated employees.1

Figure 1.2: A diagram showing the worldwide supplies of industrial robots. The x-Axis
represents time in years and the y-Axis represents 1000 units sold.2

1.4 The current state of open source ground-based mobile
robots

The biggest platform for open source software, Github, contains approximately 73,000
public repositories concerning the topic of robotics. This means that there is a vast amount
of hard- and software available. While most of these repositories contain functional pieces
of code or hardware, they rarely document the process of the design or development,
which makes it more difficult for students to get started in the broad field of robotics. One
major framework used for developing robotic systems has established itself as the de facto
standard for educational robotics. The so called Robot Operating System (ROS) started
out as multiple smaller frameworks at Stanford University in May 2007, with the first
official release of ROS in early 2010. Over the years, ROS has gained a several thousand
worldwide users, ranging from the industrial sector to hobbyists.3

1Goepfert and Shirer, Worldwide Spending on Robotics Forecast to Accelerate Over the Next Five Years,
Reaching $230.7 Billion in 2021, According to New IDC Spending Guide.

3Goepfert and Shirer, Worldwide Spending on Robotics Forecast to Accelerate Over the Next Five Years,
Reaching $230.7 Billion in 2021, According to New IDC Spending Guide.
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1.5 Application of ground-based mobile robots

Ground-based mobile robots can execute a variety of tasks. From simple household util-
ity functions like cleaning to mobility like transport of various goods or even people. To
perform these complicated tasks every robot needs at least a simple type of navigation.
Beside navigation, every robot also needs sensors to function properly. Utilizing sensors for
navigation provides robots with the tools necessary to support humans in their everyday
life.
Navigation is also a vital component for industrial robotics. The navigation can be used
in a variety of use cases ranging from the transport of heavy goods to a drop-off point or
movement of robot arms in an assembly line.
Therefor navigation is one of the most vital parts of every robotics system and an also be
one of the most important components.

1.6 The connection of robots and smartphones

Since the beginning of the millennium there has been a rapid increase of acceptance of
smart-phones. As smartphones are now commonly available in wealthy countries it makes
a good opportunity to combine smartphones with robots because both systems have the
potential to support humans in their everyday life. With the rise of stable 4G connections
throughout Europe it is also possible to transfer large amount of data over the air. This
enables high quality live video streaming outside of the connection radius of high speed
Wi-Fi.

1.7 Use of robots in the military sector

Author: Königsreiter Simon
Robots have been in use in the military sector for at least 40 Years. Certainly very im-

portant in the support of humans has been the Wheelbarrow bomb disposal robot. However
one of the biggest problems of the Wheelbarrow is that it is solely remote controlled. Es-
pecially in the military sector the autonomous exploration of a previously unknown area
provides a great opportunity.45

1.8 The use of robots in the medical industry

Robots have great potential in supporting humans in medical tasks. Highly complex sys-
tems like surgery robots are already in use around the world to assist surgeons at highly
complex tasks. But there are other types of robots like telepresence robots which enable
medical experts to be present at a location without physically being at that location. This
gives them the chance to get advanced insight on the remote medical situation.7

1.9 Personal assistance robots

Robots are not only useful in military and industrial application but have also found their
way into modern homes. These robots assist humans in their everyday life by reducing the

4Smith, “Calls to honour inventor of bomb disposal device”.
5Allison, What does a bomb disposal robot actually do?
6British Army, Remotely_controlled_bomb_disposal_tool.JPG (JPEG Image, 1024 × 768 pixels).
7University of Stanford, Robotic Nurses | Computers and Robots.
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Figure 1.3: An early version of the Wheelbarrow bot with attached remote control cables6.

amount of work needed to maintain a house. These modern assistants are capable of doing
a variety of tasks all around the house like cleaning floors8 or automated lawn mowing.
There are also robots that can help elderly people in their everyday life. They help them
by carrying the person from one position to another without human intervention or it acts
as a support to help the elderly stand up.9

8iRobot, Robot Vacuuming, Robot Mopping & Outdoor Maintenance | iRobot Online Store.
9University of Stanford, Robotic Nurses | Computers and Robots.



Chapter 2

Project Management

Author: Königsreiter Simon
Larger project always establish some form of organization to streamline the process for

project team members and produce the best possible result. In recent years there has been
a massive interest in agile project management methodologies.

2.1 Traditional project management methods

Traditional project management methods are already established and find their applica-
tion in a lot of domain areas from large finance institutes to architecture projects. These
management methods are characterized by a big planing phase and analysis phase in the
beginning in the project and an implementation phase which is not very responsive to
changed requirements from the client1.

2.2 Agile project management methods

Agile project management methods have seen an uprise in recent years, especially in the
area of software development. Agile methods take an iterative approach on project man-
agement in contrast to the already established traditional methods. This enables them to
react fast to changed requirements form the client. Agile methods in general follow the
agile manifesto which has the following statements at its core2:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

2.3 Kanban

The team of the project has decided to use Kanban as the project management method.

2.3.1 History of Kanban

Kanban dates back to around 1940 where the car manufacturer Toyota wanted to optimize
their car production. Therefor they implemented a system for their factories where each

1Project Management Institute, Don’t throw the baby out with the bathwater .
2Agile Alliance, Agile Manifesto for Software Development .

6



2. Project Management 7

team would only request a specific resource as soon as they would run out of it to minimize
excessive stock hoarding. While the "Kanban" was originally just a sheet of paper, it has
been adapted to the 21st century as a mean to help developers build software.

2.3.2 Kanban board

The Kanban board is an integral part in Kanban. The board consists of multiple lanes
where each lane represents a state of a task. Each lane has a specific Work in Progress
(WIP) number which specifies the maximum amount of tasks that can be handled by the
lane. If a lane has reached its WIP the previous lanes have to stop their work and help the
blocking lane to clear their tasks. This has the big advantage over other agile methods like
scrum that the work is continuous and not divided into fixed time frames like in scrum3.

2.3.3 Setup for AUT-AS

The project used the following lanes and WIPs:

Name Backlog Planning In Progress Testing
Maximum of WIP ∞ 2 2 2

2.4 Meetings with the client

Meetings with the client occurred weekly on every Friday except on holidays. This enabled
to team to discuss changes with the project partner and identify possible problems within
the team or the project.

3Atlassian, Kanban - A brief introduction.



Chapter 3

Overview

Author: Alexander Lampalzer
This chapter aims to give a rough understanding of the software and hardware compo-

nents of the AUT-AS project. Furthermore, it explains some concerns, that have a decisive
influence on how this architecture came to be.

3.1 Data Locality & Processing

Data locality, the minimization of data transfers to reduce network load and the choice
of right components for data processing, is been one major concern throughout the whole
diploma thesis. This aspect is explained in more detail in section 3.3, which is concerned
with where and how much performance is needed. Generally speaking, there are three
tiers of computing units: Microprocessors, Embedded Processors (FPGAs) and Application
Specific Integrated Circuits (ASICs). These tiers are ranked after their specificity to certain
tasks, with ASICs being designed for only one purpose, hence the name and microprocessors
being capable of general computation tasks. This differentiation can be observed in a
multitude of robots. For example, the PR2 robot by willow garage, which is designed for
education purposes, contains multiple servers with two quad core Intel Xenon processors1.
In contrast, the Xiaomi Mi vacuum cleaning robot is equipped with three embedded ARM
processors. One vital concern for robot manufacturers and developers alike is battery life
and it should be obvious, that more capable processors need more power and thus reduce
battery life. Reallocating certain processes to remote computers, such as servers or the
cloud is one possible approach, however this comes at the cost of more latency, which
might not be optimal for certain types of applications.

Three different approaches are tested on the AUT-AS robot.
• The robotino robot, as is used in AUT-AS, comes with an embedded Intel Atom

1.8ĠHz dual core processor. This approach is constrained by only allowing data
processing to happen on the integrated processor. The advantage of this approach is,
that there is no need for any additional computers. However, it has been found, that
the processing power available is insufficient and battery life is significantly reduced.

• In this second approach, a networked computer is responsible of data storage and
processing. It has become apparent fairly quickly, that the introduced latency makes
it impossible to navigate and perform SLAM at the same time. Furthermore, the
connection to this networked computer is limited by the WIFI range.

• This third and most viable approach combines the previous two attempts. A laptop

1willow_garage_pr2_nodate .

8
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is mounted on the robot and both the sensors and the robot are directly connected
with this laptop via Ethernet and USB. This has significant advantages: First of all,
there is an abundance of processing power available and with the additional battery
provided by the laptop, the overall battery life is increased significantly.

3.2 Time

It is of vital importance in every multi-machine robotics system, that the computer clocks
of all networked computers are synchronized - the systems responsible of data processing
need to know when measurements have been taken and results have been computed, in
order to guarantee the correct output. Common effects of not having a synchronized time
are timeouts, because components often only allow a small margin between the time of
recording and the time of processing. When messages appear to be too old, when in reality
they are as good as new, errors will happen and it is often hard to exactly localize these
sorts of errors. In the AUT-AS project chrony is utilized, because of the advantages it
provides in isolated networks2. The NTP implementation by chrony is commonly used in
ROS projects.

3.3 Construction

The AUT-AS robot utilizes a variety of sensors, a more in-depth analysis can be found in
Chapter 5 of this diploma thesis.

Figure 3.1: This is a picture of the finished construction of the AUT-AS robot. As a base,
the Festo Robotino is used and equipped with a collection of sensors.

Following adjustments have been made to the stock robotino robot:
2The chrony authors, Comparison of NTP implementations.
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• A ydlidar x43 LIDAR sensor is installed at the top, center of the robot with a 360°
field of view, for use in SLAM (See Chapter 7). Due to a low budget, the specifications
of several entry-level LIDAR sensors were compared and it was concluded, that this
sensors is the most viable option, as of November 2018.

• At the front, center of the robot an Orbbec Astra Pro depth camera is installed4.
With a camera resolution of 1080p and a depth resolution of 640p, this sensor is viable
option of utilization in object detection and localization, and obstacle avoidance.

• For external communication, a 2.4ĠHz WIFI antenna is installed. In the future, this
could eventually be replaced with an LTE or even 5G connection.

• As has already been stated in the previous chapter, the AUT-AS robot uses an
external laptop for data processing of ingested data. It can be seen at the top of the
picture.

• In order to improve odometry, a Sparkfun Razor 9DOF interial measurement unit is
installed between the LIDAR and the depth camera.

3YDLIDAR - X4 .
4Orbbec 3D, Astra Series.



Chapter 4

Robot Operating System

This chapter aims to describe the architecture of the Robot Operating System (ROS)
and explains how the AUT-AS robot utilities this framework to achieve its goals. ROS
is an open-source framework primarily designed to simplify the development, testing and
monitoring of robotics applications. It provides a vast amount of tooling to abstract robotics
hardware from the implementation. The ROS has a modular architecture, which allows
developers to easily replace different components of a robotics application and mock certain
parts of the system. Simulators, like the gazebo simulator, utilize this to provide tooling
for simulating complete robots, including sensor data and sensor noise.1 Especially in the
academic area, the open source project has gained a lot of traction which results in a big
group of regular contributors and ready to use software packages.2

Author: Alexander Lampalzer
The aim of this chapter is to describe the Robot Operating System’s (ROS) architecture

and explain how AUT-AS utilizes this framework to achieve its goals. First of all, ROS
is an open-source framework primarily designed to simplify the development, testing and
monitoring of robotics applications. It provides a vast amount of tooling to abstract robotics
hardware from the implementation. By building upon a modular architecture, which allows
developers to easily switch out different components of a robotics application and mock
certain parts of the system, ROS is able to easily integrate with third parts software.
Simulators, like the gazebo simulator, utilize this to provide tooling for simulating robotics
systems, including sensor data and sensor noise.3 Especially in the academic area, the
open source project has gained a lot of traction, which results in a big group of regular
contributors and a vast amoun of ready to use software packages.4

4.1 Architecture

Communication in the Robot Operating System is based upon a mesh architecture, where
various nodes communicate with each other by publishing and subscribing to certain top-
ics. On each topic, only one type of message can be used, such as "LaserScan" messages
(typically published by LIDARs), "Odometry" messages (e.g.: result of motor encoders) or
"Cmd2Vel" (controlling a robot’s velocity). Additionally, it is also possible to define cus-
tom messages. ROS builds upon four basic building blocks. These are described in separate
subsections below.

1Open Source Robotics Foundation, Gazebo : Sensor Noise.
2Open Source Robotics Foundation, ROS packages.
3Open Source Robotics Foundation, Gazebo : Sensor Noise.
4Open Source Robotics Foundation, ROS packages.

11
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4.1.1 Node

ROS builds upon the UNIX philosophy which states that one program should do exactly
one thing well and that it should be capable to work together with other programs. Thereby
the UNIX philosophy chose a bottom-up strategy in favour of the top-down strategy5. ROS
builds upon this guideline by building applications with nodes. A node is a process which
performs a specific computation. Each node should be responsible for exactly one func-
tionality and combined with it’s dependents and dependencies a ROS application can be
described as a graph.
This has many advantages not only from a developer’s point of view. It reduces the com-
plexity of the system as each node only has to be concerned with a certain task. It also
makes the system fault tolerant as errors only compromise one node and not the whole
system. The communication model over messages also makes nodes interchangeable as long
as nodes listen on the correct type of topic and can correctly interpret the message which
leads to the possibility to use a variety of implementations for the same task.
Every node in the ROS is uniquely identifiable at all times as each node has it’s own unique
name. These names are represented like UNIX paths for example /<node-name>6.

Services

Services are a special kind of node. Common nodes are impractical for the execution of
remote procedure calls (RPC) as these calls usually return a response. Services are specif-
ically designed for RPC actions as they can send a response to an incoming request which
are hard to achieve with normal messages. The services usually show up in ROS just like
any other node as they can be uniquely identified by a name7.

4.1.2 Messages

Messages are one of the two building blocks of communication in ROS. Messages are used
for communication by publishing them to a certain topic. Messages are type safe and
support basic data types like integer, character strings and boolean types. Messages also
support nesting of messages and arrays of either custom messages or basic datatypes.
Messages can be identified by the package name and the message filename with the file
type msg stripped8.

Message definition format

Messages can also be defined by the user. These message definitions have to reside in the
msg subdirectory of the package. An exemplary message file can be seen below:

1 Header header
2 int32 operand_a
3 int32 operand_b
4
5 time stamp

So in general the message files follow this simple format9:

1 Type1 identifier1

5Peter H. Salus, A Quarter-Century of Unix .
6Open Source Robotics Foundation, Nodes - ROS Wiki .
7Open Source Robotics Foundation, Services - ROS Wiki .
8Open Source Robotics Foundation, Messages - ROS Wiki .
9Open Source Robotics Foundation, msg - ROS Wiki .
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2 Type2 identifier2
3 TypeN identifierN

Message headers

Every message may include the special Header datatype which stores some common data
like the timestamp or an incrementally increasing id. Some of the ROS client libraries can
set some of these values automatically so the use of the Header type is highly encouraged.
A common definition of the Header type may look like this10:

1 # sequence ID: consecutively increasing ID
2 uint32 seq
3
4 time stamp
5
6 #Frame this data is associated with
7 # 0: no frame
8 # 1: global frame
9 string frame_id

4.1.3 Topics

The second building block of communication in ROS are Topics. ROS topics are unidi-
rectional named channels that enable nodes to communicate with each other. In general,
nodes do not know who they are talking to but only know the message type of the topic
they are either subscribing or publishing to. The producers of data publish to the chan-
nels while consumers of data subscribe to topics. There can be multiple producers which
produce data at the same time on the same topic11.

/topic/Publisher_Node1

/Subscriber_Node1

/Subscriber_Node2

Figure 4.1: This figure shows the relationship between different nodes and topics. Multiple
publishers can send data to topics and multiple subscribers receive data from these topics.

4.1.4 ROS Master

The most important part in every use of ROS is the so called ROS Master. This special
node manages the communication between different nodes. It also acts as a service for the
registration of nodes in the mesh.

10Open Source Robotics Foundation, Messages - ROS Wiki .
11Open Source Robotics Foundation, Topics - ROS Wiki .
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4.2 tf Transform Library

Author: Alexander Lampalzer
The various coordinate systems of each part is a common problem for robots. Therefor

the OSRF has developed the tf "transform library". This library is at the time of writing
in its second generation and is responsible to keep track of the various coordinate systems.
Developers can leverage this library by using the official Python or C++ libraries.12 To
achieve these goals, TF utilities a tree-like architecture, where every frame is a node.
Developers can then use the provided libraries to ask questions similar to:

• Where was the right grappler in relation to the robot base 5 seconds ago?

• Where is the robot located inside my map?

• What is the relation between different maps of several robots?

In order to simplify the re-use of software components, ROS introduced several naming
conventions for these coordinate frames13, such as "earth", "odom" and "base_link".

4.3 Universal Robotic Description Format

Author: Alexander Lampalzer
The Universal Robotic Description Format (URDF) provides a unified XML-based file

format and several tools for describing the components of a robot and their relationships14.
URDF also supplies an integration with the gazebo simulator, to mock different parts of
the robot, such as sensors, drive and motors. To achieve this, following XML tags are
implemented:

• <link>

• <transmission>

• <joint>

• <gazebo>

• <sensor>

• <link>

URDF also provides several tools to parse, publish and convert these files. The urdf
parser allows developers to parse files and convert them into c++ data structures. Further-
more, transform trees can also easily be published using the so called r,obot_state_publisher
and joint_state_publisher. The AUT-AS robot’s URDF is visualised in Fig. 4.2.

Figure 4.2 depicts the physical relationships and transformations between sensors,
their coordinate frames and the center of the AUT-AS robot. This allows calculation and
utilization of multiple sensor sources in one single, unified system. It is a integral and vital
part of every robotics system. In ROS, this is typically referred to as the transformation
tree, or short tf tree. A set of best practices / naming conventions have been established
in ROS enhancement proposal (REP) 10315, 10516 and 12017.

12Foote, “tf: The transform library”.
13Meeussen, REP 105 .
14Open Source Robotics Foundation, urdf - ROS Wiki .
15Foote and Purvis, REP 103 .
16Meeussen, REP 105 .
17Moulard, REP 120 .
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base_link

camera_joint

xyz: 0.12 0 0.085 
rpy: 0 -0 0

wheel0_joint

xyz: 0.065 0.11 0.04 
rpy: 0 -0 1.0472

wheel1_joint

xyz: -0.13 0 0.04 
rpy: 0 -0 0

wheel2_joint

xyz: 0.065 -0.11 0.04 
rpy: 0 0 -1.0472

ydlidarx4_joint

xyz: 0.1 0 0.16 
rpy: 0 -0 0

camera_link

camera_depth_joint

xyz: 0 0 0 
rpy: 0 -0 0

camera_rgb_joint

xyz: 0 0 0 
rpy: 0 -0 0

camera_depth_frame

camera_depth_optical_joint

xyz: 0.1 0 0 
rpy: -1.5708 -5.55112e-17 -1.5708

camera_depth_optical_frame

camera_rgb_frame

camera_rgb_optical_joint

xyz: 0 0 0 
rpy: 0 -0 0

camera_rgb_optical_frame

wheel0_link wheel1_link wheel2_link ydlidarx4_link

Figure 4.2: This figure visualises the different components of the AUT-AS robot as de-
scribed by the URDF and the relations between them.

4.4 Gazebo Simulator

Author: Alexander Lampalzer
The modular architecture of ROS allows developers to switch out and mock different

nodes in their systems. Gazebo uses this approach and provides a number of different nodes
for simulating robots.
There are several ways to configure robots with Gazebo, such as SRDF, SDF and URDF.
In order to unifiy the transform trees in the simulated and in the real environment, the
AUT-AS robot is described using URDF, wich is then used for publishing the transform
tree and simulating the different parts of the robot.



Chapter 5

Sensors

Author: Alexander Lampalzer
Mapping the environment and detecting obstacles in this environment is an essential

task for the AUT-AS robot. In order to achieve this goal a variety of different sensors are
needed.

5.1 Lidar

Light detection and ranging (Lidar) is a common distance measurement sensor. It sends
out pulses of light and measures the time it takes for these pulses to return, hence it can
also be classified as a time of flight sensor. By utilizing rotating mirrors, these sensors can
also create maps of 2D/3D environments1. These distance measurements also form the
basis for a lot of SLAM Algorithms. An example esult of a 2D lidar scan can be found in
Fig. 5.1

5.1.1 ydlidarx4

To perform the required mapping of the environment, the AUT-AS robot uses the "X4"
lidar made by the chinese company "ydlidar". The authors compared the most popular 2D
lidar systems and concluded, that the ydlidarx4 provides a good entry solutions for teams
with a limited budget, because of its relatively cheap price of 100.70€.

Name YDLIDAR X4 RPILIDAR A1M8
Price incl. UST. 100.70€ 100.70€

Measurement Freq. 5 kHz 2 kHz
Rotational Freq. 7Hz 1Hz - 10Hz
Max. Distance 11m 6m

Distance Resolution < 0.5% (<2m); < 1% < 0.5% (<1.5m); < 1%
Angular Resolution 0.48 ° - 0.52 ° 1 ° @ 5.5Hz

Weight 180 g 190 g

Table 5.1: A table comparing two entry-level lidar sensors.

1US Department of Commerce, What is LIDAR.
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Figure 5.1: This image shows the result of a 2D lidar scanner. It was obtained by simulating
the AUT-AS robot using the gazebo simulator. The density of the points decreases with
distance from the sensor. This particular sensor has a maximum range of 15m, this graphic
choses 0.5m as cell size.

5.2 Depth Cameras

Depth cameras provide depth information, in addition to regular color data. Since the
release of the first affordable depth camera by Microsoft in 2010, the field has flourished
and noumerus new applications have been developed. There is a variety of approaches to
how depth cameras work, the most popular are explained below:

5.2.1 Structured Light

In an approach known as structured light, a projector (often infrared) is used to create
a known pattern, such as a speckle or line pattern. This way, depth can be computed
only using one camera and without the need of any external illumination source. However,
reflective surfaces, such as mirrors, or infrared light, such as that produced by the sun,



5. Sensors 18

disrupt this pattern.2

5.2.2 Stereo triangulation

Another approach is to measure depth using multiple cameras by applying stereopho-
togrammetry. This does not require any external illumination source, like an IR projector
and thus has an increased maximum distance. However, it needs the surfaces to be tex-
tured, because finding features on surfaces with e.g.: uniform colors is very inaccurate.
Furthermore, stereophotogrammetry requires several computationally expensive steps.

5.2.3 Time of flight

Time of flight (TOF) cameras work simmilar to LIDAR sensors. By using an infrared light
source, a pulse is emitted and the time needed for this light to return to the imaging
sensor is measured. However, this doesn’t come without disadvantages: In contrast to
typical lidars, where just a single point is illuminated, a TOF camera illuminates the
whole scene, This means, light may be reflected multiple times and therefore accuracy is
decreased. It is also easily disturbed by other infrared light sources, such as the sun or light
bulbs. However, there are also several advantages: Distance measurement in TOF sensors
is relatively straight forward and as such it is computationally inexpensive in comparison
with stereo cameras. This also allows the use in real-time applications3

5.3 Rotary encoders

A typical choice to measure the velocity, acceleration or angle of a shaft, such as a motor
shaft, is a rotary encoder. These sensors are primarily designed to either output the current
position or the velocity of an attached shaft. There are many applications this is useful for,
especially in robotics. E.g.: it is used to estimate how far a wheel has moved, which then
can be used to approximate how far the robot has traveled. Several approaches are used
in the construction of encoders, most are either as mechanical, optical or magnetic. These
greatly differ in their resolution and resistance to outside factors like dust and oil.4

5.4 Inertial Measurement Unit

Author: Königsreiter Simon
The Inertial Measurement Unit (IMU ) is another type of sensor that measures the

current angular velocity and acceleration. The Razor IMU M0 is an attractive IMU by the
company Sparkfun. This particular IMU combines an accelerometer to measure accelera-
tion, a gyroscope to detect orientation and angular acceleration and a magnetometer to
measure magnetic fields.

The general idea was to use the IMU for localization and tracking of the robot in
combination with other sensors as the IMU is very inaccurate in calculating the distance
traveled. Using the accelerometer for distance calculation is inaccurate because the values
from the sensor have to be integrated two times. Each integration has a small error that
sums up every time5.

2Zanuttigh et al., “Operating Principles of Time-of-Flight Depth Cameras”.
3Zanuttigh et al., “Operating Principles of Structured Light Depth Cameras”.
4Eitel, Basics of Rotary Encoders.
5Christian B. Bellanosa, Ruth Pearl J. Lugpatan, and Diogenes Armando D. Pascua, “Position Estima-

tion using Inertial Measurement Unit (IMU) on a Quadcopter in an Enclosed Environment”.
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5.4.1 Problems of the Razor IMU M0 with ROS

The Razor IMU M0 is per default not compatible with ROS. But there is an official ROS
Firmware that enables the IMU to output ROS compatible messages to use in the system.
The fact that the IMU features an Arduino (A company selling micro controllers and
additional software) compatible micro-controller makes it easy to install the new firmware
onto the device. The firmware requires to calibrate the IMU which is a cubersome task
because it requires the user to slowly move the device in every possible direction without
any rapid movement in all nine degrees while reading special values off a terminal window
and then setting them in the firmware. After calibrating the sensors several times the
team has found out that this particular IMU is affected by a known error in the software
that is currently not possible to fix6. After finding out about this problem, the team has
found another, community maintained, firmware that is also capable of outputting ROS
compatible messages. Although this new firmware required some changes in the source
code to actually produce output that is ROS compatible, it had several advantages over
the officially promoted firmware:

• It actually works with the IMU.
• It didn’t require any configuration and was pretty accurate out of the box.

Different coordinate systems

One problem that is especially important when mounting the IMU on the robot is that
the coordinate systems used by ROS and the one described on the device itself differ. This
is visualized in figure 5.2.

5.4.2 Measuring the accuracy of traveled distance

The team wanted to find out how much the previously mentioned error with the IMU is.
Therefor a test was planned to measure how much this error is and how practical the IMU
is to measure driven distance. Therefor several tests have been conducted in order to find
the results.

All the experiments were programmed as a line follower to have a reference what the
actual travelled distance should actually be. All the attempts were conducted in the gym
of the HTL Wiener Neustadt.

Attempt one

The first experiment used the thick black line as shown in figure 5.3. Although several
attempts were made using this line it has been discarded as a lot of black lines going away
from the specified line made it difficult to consistently follow this specific line.

Attempt two

After the second attempt has been abandoned, the team has tried to use another set of lines
in the gym that are more distinct to its near neighbour lines. The yellow line in figure 5.3
was unique in its colour compared to its Neighbors. Therefor a new line follower has been
programmed to follow the yellow line. The problem with this approach was the reflective
surface of the ground of the gym. Due to strong reflections of the light, the robot tended
to detect the reflections of the sun through a window rather than the actual yellow line.

6Open Source Robotics Foundation, razor_imu_9dof - ROS Wiki .
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Figure 5.2: An image showing the difference of the coordinate Systems. Left: The coordinate
system described on the IMU itself; Right: The coordinate system used by the ROS Messages
and the firmware.

Attempt three

As it is not possible to access the gym at night the line follower of attempt two has been
rewritten by combining the approaches of attempt one and two. For this effort the same
line has been used but this time the input images are inverted in an attempt to get more
distinguishable colours. Although the problem with the reflections got better it was still
not enough for the robot to separate the line from the reflection.

Therefor the line following approach has been completely dismissed.

Attempt four

The last attempt is completely different than the others by tracking the robot with an
external camera. For this approach the robot got a special AruCo tag that enables a camera
to track the pose of the robot based on images received from a camera. The general idea
is that the camera is positioned on an elevated position and looks down on the robot to
make tracking simpler7.

HaruCo Tags
HaruCo tags are special standardized tags that enable special libraries to precisely keep

track of the position of the tags. The tags are usually used in combination with the alvar
library that keeps track of the tag for the user. An image of these special tags can be found
in Figure 5.4.

7ar_track_alvar - ROS Wiki .
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Figure 5.3: The schematic lines of the gym. Experiment one used the thick black line
whereas experiment two and three used the yellow line.

Figure 5.4: An image showing the special standardized tags used to accurately track a
robots position8.



Chapter 6

Sensor Fusion / State Estimation

Author: Alexander Lampalzer
A problem often encountered in modern robotics is that of state estimation, e.g.: po-

sitional or speed information. To achieve this goal it is necessary to measure the robot’s
actions using sensors. However, these sensors are prone to errors. By fusing data that orig-
inates from multiple sources, it is possible to increase the quality of an estimation. Modern
state estimation techniques, such as the family of Kalman filters, heavily rely on input from
multiple data sources. This chapter aims to describe how sensor fusion can be applied to
the state estimation problem and what advantages and disadvantages different algorithms
have.

The state estimation problem is often expressed in two very simple equations. 6.1
describes how state changes, this is expressed by f(x). Often, additional input into the
system is provided, which is described with B(x)u. Furthermore, it is assumed, that the
output of a system is measurable. Described here with h(x).

ẋ = f(x) +B(x)uy = h(x) (6.1)

The state x contains information about the system - in a mobile robotics context this
might be position and speed of the robot or information about objects in the environment.

The measurement z, often also called observation, commonly includes information rel-
evant to the state, such as sensor measurements.

The controls u are inputs to the system, in mobile robots this most likely is odometry
information.

6.1 Odometry

Author: Königsreiter Simon
Odometry is a special form of localization that enables a robot to calculate its position

relative to its starting position. For ground based robots moving perfectly linear it is easy
to calculate the relative position. To calculate the new position it is important to know the
robots initial pose represented by the triple (x, y, θ) where x and y is the (x, y) position
on the ground plane and θ is the direction the robot is facing12.

The new pose can be calculated with the formula:

1Mordechai, Elements of robotics.
2Clark, “ARW – Lecture 01 Odometry Kinematics”.

22



6. Sensor Fusion / State Estimation 23

θ

x

y

x

y

Figure 6.1: A figure showing the general way the pose is represented in the real world and
how the state can go from an initial state to the next.

y = vt ∗ sin θ

x = vt ∗ cos θ
(6.2)

6.1.1 Non-linear odometry

Due to differences in motor strength, wheel diameter and ground traction it is unrealistic
to assume a perfectly linear model of movement. This section will now explain a method
to calculate the state of the robot when the path contains arcs and turns.

Using the rotary encoders described in section 5.3 it is possible to calculate the traveled
distance using the wheel radius rs and the wheels’ revolutions represented by ωs where s
can be either l for the left wheel of r for the right wheel or c for the center of the robot:

ds = 2πrsωst (6.3)

Now to calculate the turn in radians the formula

θ =
ds
rsP

(6.4)

can be used where P is the origin of the turn.
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To calculate theta with an unknown P the formula 6.4 can be used:

θrlP = dl

θrrP = dr

θrrP − θrlP = dr − dl

θ =
(dr − dl)
rrP − rlP

(6.5)

Using the formula 6.5 one can also calculate the movement of the center of the robot
rcP :

dcP = θrcP

dcP = θ(
rlP + rrP

2
)

dcP =
θ

2
(
dl
θ

+
dr
θ

)

dcP =
dl + dr

2

(6.6)

For small moved distances the change in the direction the robot is looking is θ and the
change on the (x, y) plane can be calculated with

dx = −dcP sin θ

dy = dcP cos θ
(6.7)

which results in the pose after the turn being

(−dcP sin θ, dcP cos θ, φ+ θ) (6.8)

based on its starting point.
This method is only working for small distances to keep the calculation simpler and

the formula assumes a constant speed which is only possible for small distances3.
Figure 6.2 Shows the various variables of the formulas above visualized.

6.1.2 Errors in Odometry

As it has been previously stated, odometry is prone to errors. These can be accumulated
over time and are especially significant if the robot changes its heading. To calculate the
error of a completely linear movement for a expected driven distance s and a maximum
error of odometry p, the formula

∆x = n ∗ p

100
(6.9)

can be used. To calculate the error of driven distance with a change in heading ∆θ with
a maximum error of up to p percent the formula

3Mordechai, Elements of robotics.
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θ
P

r_lP
r_cP

r_rP

d_lP

d_cP

d_rP

Figure 6.2: This figure shows the various figures to calculate the distance traveled with
a two-wheeled robot making a slight left turn. The angle θ represents the turn radius in
radians. rrP , rcP and rlP represent the radius of the destination point based on an origin
point P of the turn. dlP , dcP and drP represent the actual distance traveled by the left and
right wheel and the center of the robot.

∆θ = 360 ∗ p

100
= 3.6 ∗ p

∆y = n ∗ sin(3.6 ∗ p)
(6.10)

is used. To demonstrate the error of odometry for both the linear movement and a
change in heading see Figure 6.3 which uses an n = 10m and visualizes the error of
p ≤ 10%.

To overcome the error prone input of odometry a selection of methods has been devel-
oped to combine the information from various sensors to increase accuracy. This method
is called sensor fusion and is described in more detail in the following sections4.

6.2 Bayes Filter

Author: Alexander Lampalzer
The Bayes Filter Algorithm provides a framework, used for recursive state estimation,

meaning that it calculates the belief bel(xt) by utilizing the current belief bel(xt−1). By
assuming a Markov property, it only has to keep the current state xt in memory and
also saves computational resources. Bayes filter consists of two steps, commonly known as
prediction and correction.

bel(xt) =

∫
p(xt | ut, xt−1) bel(xt−1) dxt−1 (6.11)

The prediction step incorporates the motion model p(xt | ut, xt−1) and uses this to
predict the future given the last controls.

4Mordechai, Elements of robotics.
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Figure 6.3: A figure representing ,0the error of odometry for linear movement and a non
linear movement. The dashed line represents the error for the linear movement whereas the
line is the error of non-linear movement. The x-Axis represents the maximum percent and
the y-Axis the maximum offset of the target distance of 10 meters.

bel(xt) = η p(zt | xt) bel(xt−1) (6.12)

The next step is commonly called correction or measurement update step. Here, the be-
lief bel(xt−1) is multiplied by what is commonly referred to as the sensor model p(zt |xt).
In some cases, this might not integrate to 1, because of this the result is normalised by
multiplying with η.

The following sections describe different implementations of the bayes filter algorithm,
each having its own advantages and disadvantages.

6.3 Kalman Filter

The Kalman Filter is probably the most known implementation of the Bayes Filter. It is,
just like the bayes filter, a recursive algorithm. However, it assumes its internal state to be
a linear dynamic system. Meaning, that at each iteration, a linear operator is applied to
the state to generate a new state. Often, this assumption is not necessarily true for more
complicated systems. The Kalman filter also assumes the observation and process noise
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Figure 6.4: This graphic depicts the discrete bayes filter algorithm and its different stages.
An initial belief at position 1 is assumed. Following this, a motion two positions forward with
included gausian uncertainty is introduced. This motion is verified using a sensor observation
and the prediction is corrected.

to be Gaussian, which also is not necessarily correct. Nonetheless, it is still widely used
technique, especially for sensor fusion.
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6.3.1 Mathematical Definition

Variable Description Dimension
x State Vector nx × 1
P Covariance Matrix nx × nx
u Control Vector nu × 1
z Observation Vector nz × 1
F State-transition Model nx × nx
B Control-input Model nx × nu
H Observation Model nx × nz
R Observation Noise Covariance Matrix nz × nz
w Process Noise Vector nx × 1
Q Process Noise Covariance Matrix nx × nx
K Kalman Gain nx × nz

Table 6.1: This table shows the different variables required for computing the Kalman
algorithm with their size.

1 def kalman_filter(xt−1, ut, zt):
2 xt = Ftxt−1 +Btut + wt # Prediction of a new state
3 P t = FtPt−1F

T
t +Qt # Covariance associated with state

4
5 Kt = P tH

T
t (Rt +HtP tH

T
t )−1 # Kalman Gain

6 xt = xt +Kt(zt −Htxt) # Correction of state
7 Pt = P t(I −KtHt) # Correction of associated covariance
8
9 return xt, Pt

Listing 6.1: Kalman-filter algorithm described in pseude-code.

6.3.2 Example

In order to demonstrate the usage of a Kalman-Filter, consider the following example:
Some vehicle is moving along a two-dimensional plane. It is assumed, that the object’s
velocity stays constant. This vehicle has sensors built-it, that return odometry information.
However, using this alone does not suffice to estimate the position, as even small errors in
the odometry accumalate and lead to something, that is known as drift. To counteract this,
the estimations from a GPS sensor are fused with the data produced by the odometry. For
more information about the models used, see5. The state is defined as having a positional
and a speed component:

xt =
[
px vx py vy

]T
, F =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 , Q =


1
3∆t3 1

2∆t2 0 0
1
2∆t2 ∆t 0 0

0 0 1
3∆t3 1

2∆t2

0 0 1
2∆t2 ∆t

σ2
w

GPS sensors only determine the current position. Applications might include additional
components to measure the heading or acceleration.

5N. Shimkin, “Kinematic Models for Target Tracking”.
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H =

[
1 0 0 0
0 0 1 0

]
, R =

[
σ2
z 0

0 σ2
z

]

For this simulation, a frequency of measurement for the GPS sensor of 10Hz and an
accuracy of 2.5m was chosen. An accuracy of 0.1m was chosen for the odometry. The
results can be found in 6.5. It can be seen, that the odometry produced is a very smooth
path, that however diverges as time continues. GPS measurements are not very accurate,
however they provide enough information to reduce the over error, which results in an
estimation superior to when using GPS or odometry alone.
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Figure 6.5: Simulation of a object moving with constant velocity along a plane. Introduction
of a GPS sensor and a Kalman filter allow an accurate estimation of the current position of
this object.

6.4 Extended Kalman Filter

The Kalman filter discussed in the last section uses linear equations for the process and
observation models. In reality however, a lot of problems are non-linear. One approach
to handle this problem is by linearizing the system at the point of current estimate. This
section aims to detail how exactly this is achieved.
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6.4.1 Jacobian matrix

The Extended Kalman Filter (EKF) makes extensive use of jacobian matrices - for this
reason it is necessary to explain what jacobians are and their notation. A Jacobian matrix
consists of all first-order partial derivatives of a function. It is best explained by considering
a simple example with functions f1(x, y) = x2 + y2 and f2(x, y) = cosx+ y

f(

[
x
y

]
) =

[
x2 + y2

cosx+ y

]
,Jf (x, y) =


∂f1

∂x

∂f1

∂y

∂f2

∂x

∂f2

∂y

 =

[
2x 2y
− sinx 1

]
(6.13)

6.4.2 Linearization

One underlying assumption of the Kalman family of filters is, that they assume everything
to be gaussian. This is easily violated when the observation or process model are non-
linear. The EKF approaches this problem by taking the partial derivative of these non-
linear functions and evaluating at the mean. However, this is the root cause of problems
associated with the EKF, because by linearization only an approximation of the original
function is used. Multiple solutions exist for this, such as the Unscented Kalman Filter.
This results in the following formulas:

1 def extended_kalman_filter(xt−1, ut, zt):
2 Ft =

∂f
∂x

∣∣
xt−1,ut

3 xt = f(xt−1, ut) + wt

4 P t = FtPt−1F
T
t +Qt

5
6 Hx = ∂h

∂x

∣∣
xt

7 Kt = P tH
T
t (Rt +HtP tH

T
t )−1

8 xt = xt +Kt(zt − h(x))

9 Pt = P t(I −KtHt)
10
11 return xt, Pt

Listing 6.2: The EKF algorithm in pseudo-code.

6.5 Unscented Kalman Filter

As can be seen in the previous section, the EKF utilizes taylor expansion to linearly
approximate non-linear functions around their mean. This however, can introduce large
errors. The Unscented Kalman Filter (UKF) aims to increase the performance and hence
reduce the introduced errors. The UKFs approach is quite simple: Instead of taking only one
point (the mean), several points (Sigma Points) are sampled from the original distribution
and transformed through the non-linear function. The new mean and covariance are then
calculated from the result. Furthermore, these points can also be weighted. This is also
called the "unscented transform".

To compute the unscented transform, a set of sigma points has to be chosen. Many
methods to choose these have been proposed, however in general the approach by S. Julier
et. al6 is used. They suggest the use of 2n + 1 sigma points χi, with n being the dimen-

6Uhlmann, S. Julier, and Durrant-Whyte, “A new method for the nonlinear transformation of means
and covariances in filters and estimators”.
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sionality of the state x. The following calculations assume λ to be a scaling parameter,
where λ = a2(n+ κ)− n. α and κ determine the spread of sigma points around the mean,
typical values for are α = 1−4 and κ = 0. β is related the distribution of the state vector
- for gaussian distributions the optimal value of β = 2. Implications of different values for
α, β, κ can be found in Bitzer, UKF-Exposed

χ0 = x

χi = x+ (
√

(n+ λ)P )i, i = 1, . . . , n

χi = x− (
√

(n+ λ)P )i−n, i = n+ 1, . . . , 2n

(6.14)

Wµ
0 = λ/(n+ λ)

WΣ
0 = λ/(n+ λ) + (1− α2 + β)

Wµ
i = WΣ

i =
1

2(n+ λ)
, i = 1, . . . , 2n

(6.15)

The next step is to transform all sigma points through the non-linear function f , which
results in a new set of sigma points γi = f(χi). This new set is used to approximate a new
mean and covariance.

γ =
2n∑
i=0

Wµ
i γi (6.16)

P =
2n∑
i=0

WΣ
i (γi − γ)(γi − γ)T (6.17)
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Figure 6.6: This diagram compares 2D EKF and UKF filters, with the covariance obtained
by sampling 500 points. The top figure shows the randomly generated input data and it’s
associated covariance. In the bottom figure, the results of the EKF, the ukf and it’s sigma
points are shown. It can be seen, that the (dashed) covariance of the UKF represents the
true covariance more closely than the EKF counterpart.



Chapter 7

Simultaneous Localization and
Mapping

Author: Alexander Lampalzer
At it’s core, the simultaneous localization and mapping (SLAM) problem has two goals:

Estimating a map and the position of a robot within this map. In mathematical terms:
Given observations Z and the controls U , estimate the current position xt and the envi-
ronment m. This is often referred to as "Full SLAM", meaning that the whole path and
map are estimated.

P (x0:t,m|z1:t, u1:t) (7.1)

What is referred to as "Online SLAM", means that only the current pose and map are
estimated. In this variation, new data is introduced to the system while it is running - thus
the name.

P (xt,m|z1:t, u1:t) (7.2)

Over the years, this problem has been introduced to many fields and applications, such
as home appliances like vacuum cleaners, autonomous driving, unmanned aerial vehicles
and even planetary rovers such as the mars curiosity rover.

7.0.1 Map Representations

The two most common types of map representations used are grid-based maps and feature
/ landmark based maps - both with their respective advantages and disadvantages. In the
AUT-AS project, grid maps are utilized, as they include the topology of the physical envi-
ronment and thus allow navigation and path planning. Grid based maps utilize occupancy
grids, by dividing these maps into cells (eg. 10 by 10 centimeter) and storing whether this
cell is blocked by a wall. In contrast, feature based maps only contain the location of certain
landmarks, which can then be used for localization.

7.0.2 Kalman Filter Approach

Kalman filter based approaches utilize an EKF, hence the name. The author suggests a
good understanding of this technique, before diving into this section. See 6.3 for a basic
introduction. The EKF-based approach utilizes a landmark based map, this results in
the map m containing the position of the robot, the positions of the landmarks and the
covariance of both. Each cycle of this algorithm, following steps are conducted:

33
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1. State prediction: In this step, the motion model is applied and the position and
covariance of the robot are updated. Do note, that the position of the landmarks is
not changed yet!

2. Measurement prediction: The 2nd step utilizes the changed position and predicts,
what the new measurement could look like.

3. Measurement: A new measurement is take from the observation sources.
4. Data association: Now the difference between the actual and the predicted measure-

ment is computed.
5. Update: Finally, the position and covariance of the robot and all landmarks are

updated.

7.0.3 Graph-based SLAM

In contrast to the Kalman-Filter approaches, graph-based approaches utilize a graph (hence
the name) to represent the slam problem. In this graph, nodes correspond to robot positions
and observations and edges correspond to constraints, such as odometry edges. This graph
is optimized and the error minimized, which in the end allows for a map to be created.

Figure 7.1: Example of a map generated by the cartographer slam algorithm, of the 2nd
floor of the HTBLuVA Wiener Neustadt faculty for IT. This map includes many errors, such
as glass reflections.



Chapter 8

Locomotion

Author: Königsreiter Simon
Just as important as the robots perception is its movement. Therefor the type of lo-

comotion is just as important as the equipped sensors. Locomotion is the counterpart to
manipulation where in manipulation the robot’s arm is fixed and force is applied to an
object. In locomotion on the other hand the robot is fixed and applies a force to the en-
vironment. Most of the propulsion types have been inspired especially the various types
of legged locomotion. Another type of robot is the wheeled robot. Although wheels don’t
appear biologically in nature like legged types of drive, the wheel can be partially derived
of the bipedal walk of humans. The bipedal walk of humans can be modeled after a rolling
hexagon where the length of a side is the step size and the radius of the wheel is the height
of the leg.

The main considerations when choosing or designing the type of drive are:

• Stability

• Maneuverability

• Controllability

The following sections are going to elaborate the various kinds of robots in more detail
and each of its advantages and disadvantages1.

8.1 Legged robots

Legged robots have been heavily inspired by nature as it provides various efficient examples
like humans or ants. There have been working examples in the field of robotics with various
leg counts ranging from one legged robots with up to six or more legs. Legged robots have
a variety of advantages compared to wheeled robots. The biggest is the ability to leap over
gaps with up to the length of the leg. Furthermore it is also possible to navigate more
energy efficient through muddy terrain and uneven ground or sudden changes in level like
stairs which do not impose such a big of a problem. The disadvantage of legged robot on
the other hand is the need to keep the balance of the robot depending on the count of legs.
If there are more than one leg it is also required to perform leg coordination to efficiently
move forward23.

1Siegwart, Nourbakhsh, and Scaramuzza, Introduction to Autonomous Mobile Robots.
2Böttcher, “Principles of robot locomotion”.
3Christensen, “Robot Locomotion”.
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8.1.1 One legged robots

Although this is a rather uncommon form of robot, it is possible and can actually be im-
plemented. Rather than walking like humans, this robot uses a hopping style of movement
to keep its balance. With the efficient use of springs it is possible to use most of the used
energy gathered through the impact of the jump and reuse it. Therefor it is not necessary
to carry big battery packs and this enables the robot to keeps its overall mass low. This
type of movement is incapable of static balance and has to use dynamic balance. Static
balance describes a type of balance where it is not necessary to regularly apply force to
keep the robot balanced. Dynamic balance is the opposite of static balance and requires
regular application of force.

8.1.2 Two legged robots

Two legged robots have mostly been modeled after the bipedal style of walking humans.
This type of movement is the first type of movement that requires the need of leg coordi-
nation in star contrast to one legged robots. With the help of an additional leg it is also
easier to keep balance but still requires some force applied to the ankles to keep the robot
upright.

8.1.3 Three legged robots

Three legged robots are the first type of legged robot where static balance is possible as
long as all three feet are on the ground.

8.1.4 Four legged robots

These types of robots have been inspired by various types of animals like cats and dogs. The
count of feet also makes it possible to statically balance the robot. The four legged robot
is especially used in the field of integrating robot pets into human’s life. The additional
two legs compared to the two legged robot enable the robot to climb or overcome obstacles
higher than its waist.

8.1.5 Six legged robots

These robots use insects as their primary inspiration. The six feet are useful to keep the
robot balanced as it is possible to keep three feet on the ground at all times. This also
implies that the robot can be balanced at all time. The complexity of the six legged robot
can be far more complex compared to the previous robots as an additional joints need to be
placed on the body of the robot to enable turning. Therefor the legs have to be coordinated
with the legs to prevent collisions of the legs with each other45.

8.2 Wheeled robots

Wheeled robots are usually found in all types of man made machines and robots with
wheels are very efficient. Depending on the type of wheel they are significantly easier to
handle than legs, but the challenge with wheeled robots lies in the design to arrange the
wheels in a way that they are best suited for any terrain.

The various types of wheels include the following:
4Christensen, “Robot Locomotion”.
5Siegwart, Nourbakhsh, and Scaramuzza, Introduction to Autonomous Mobile Robots.
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Figure 8.1: An image representing the 4 common wheel types. (A) Standard wheel with
a motorized axel. (B) Castor wheel with a motorized axel and another axel at the top. (C)
and (D) Swedish wheels either 90° or 45°. They have a high degree of freedom as they can
glide across the ground with low friction. (E) Spherical wheel with the highest degree of
freedom and really omnidirectional

• The standard wheel: This is a simple wheel with two degrees of freedom. It can rotate
around the usually motorized axle and the point of contact with the ground.

• The castor wheel: This wheel also has two degrees of freedom of movement around
the ground contact point and the offset axis on top.

• The Swedish wheel: This type of wheel has three degrees of freedom. The motorized
axle, the contact point on the ground and it can also move across the ground plane
using the passive wheels on the edge of the main wheel. This has the advantage that
the robot can move freely across the (x, y) plane.

• The spherical wheel: A truly omnidirectional wheel that can move freely in all possible
direction on the ground plane. Usually implemented by placing a powered roller on
top of the sphere to apply force to it.

The different wheel types described above are important as they directly impact the
wheeled robots three main properties: its maneuvrability, stability and controllability6.

8.2.1 Stability

To achieve static stability it is necessary to have at least three contact points at each point
in time to keep the robot balanced. Although it is possible to achieve static balance with
two wheels it is impractical as the center of mass has to be located below the main axle
which quickly results in a large wheel radius.

6Siegwart, Nourbakhsh, and Scaramuzza, Introduction to Autonomous Mobile Robots.
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8.2.2 Maneuverability

Depending on the type of wheel the maneuverability can be greatly improved or can be
really limited. One example of great maneuverability is a robot using three Swedish wheels
as it can move across the ground in any direction. The star contrast is the Ackermann
wheel architecture usually found in cars. This configuration limits the maneuverability
and robots or cars using this configuration usually require large radii to turn.

8.2.3 Controllability

The complexity to control a robot is usually directly tied to its maneuverability. The
spherical wheel is the most complex type of wheel to control as a lot of calculations have to
be performed to convert the desired direction movement into actual wheel commands. The
degrees of freedom in movement also have an impact on the amount of error corrections that
have to be performed while driving. A small robot using the Ackermann wheel architecture
(a wheel configuration commonly found in cars consisting of two motorized standard wheels
and two passive steering wheels) can easily drive in a straight line by simply locking its
steering wheels, whereas a robot using omnidirectional wheels has to continuously correct
errors in the motor speeds or when the ground is slippery.



Chapter 9

Image Classification and Object
Detection

Author: Königsreiter Simon

To support humans with the AUT-AS robot an additional Object Detection and Clas-
sification system has been added to the platform. The system can help humans in detecting
and identifying objects with the help of the robot. The following sections will introduce the
concepts of Classification with the help of neural networks and then compare a selection
of various implementations of the task.

9.1 Definition of classification

The task of classifying things is a part of many human activities. But especially in the
field of machine-assisted classification it can be defined as extracting features from a given
input and then the assignment of a certain type to the input. If the classes of an object are
known beforehand it may also be referred to as pattern recognition, supervised learning
or discrimination. The task of machine-assisted classification can find a variety of different
use-cases like sorting letters with a machine after reading the zip code with a camera or a
precautionary treatment based on symptoms in a medical faculty until the final results have
been anounced. Many approaches have been taken that share the same goals of exceeding
the human’s brain in the ability to make decisions and to generalize a large amount of data
so unknown data may also be processed by the system. Three of these approaches are the
neural network, machine learning and the statistical.

• Statistical approach: This approach uses an underlying probability method. This leads
to the result that the output of the statistical approach is rather a list of probabilities
rather than a single classification.

• Machine learning: Machine is an approach where the system should learn the connec-
tions from given example data. This may also require large amounts of example data
for the system to form the connections for classifications. An example for machine
learning is a decision tree or genetic algorithms.

• Neural networks: Neural networks were created with the human mind as an inspira-
tion where a neural network consists of multiple layers of neurons that are connected
with each other. There are input nodes that get their input directly from the available

39



9. Image Classification and Object Detection 40

data whereas there are output nodes that ultimately determine the classification1.

9.2 A basic introduction to neural networks

As described above, a neural network (NN ) is a weighted directed graph where the neu-
rons represent nodes in the graph and the connections between them represent the edges.
Learning is accomplished by adjusting the weights between the nodes. If a classification
for a specific input is correct then the weight will be increased so the neuron will activate
with similar data. If the output of the NN is incorrect on the other hand, the weight will
be decreased for the so the node will not activate for similar data again.

Figure 9.1: A diagram showing the structure of a Multi Layer Perceptron (MLP) similar
to those used in modern systems.

Figure 9.1 shows a simple scheme for a Multi Layer Perceptron (MLP) which is used
in today’s neural networks. The network has x input nodes and unlike in the graphic an
undefined number of hidden layers. The hidden layers in general tend to be small to force
the network to generalize data2.

9.2.1 Training the NN with backpropagation

The hidden layers in a neural network propose a problem as it is not as easy to find
out which node lead to the error in an output. Therefor the backpropagation algorithm
has been developed to deal with the error of hidden layers. It builds upon the delta rule
that on the other hand builds on top of the mathematical concept of gradient descent. To
understand the mathematical background of backpropagation the basics of the delta rule
will be elaborated further first.

The delta rule is one basic training rule for neural networks and can basically be used
to minimize the error of a neural network. The NN in general for the delta rule has no

1Michie, Spiegelhalter, and Taylor, “Machine Learning, Neural and Statistical Classification”.
2Michie, Spiegelhalter, and Taylor, “Machine Learning, Neural and Statistical Classification”.
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hidden layers and an arbitrary number of input and output nodes o. Now take a random
output node on and any element from the input vector Xp. Then the target output of the
neural network can be defined as t(Xp, on). The actual output of the node on can then be
defined as

y(Xp, on) = s(a(Xp, on)) (9.1)

where s is a non-linear function usually also called sigma that returns a value between
0 and 1 and is defined as

σ(x) =
1

1 + e−x
(9.2)

and a is the neurons activation function that either activates - or returns a value not
equal to zero - for a given input or not. Therefore adjusting the weight of each node
minimizes the error between the functions t and y which ultimately makes the NN more
accurate. To calculate the error of some Xp and some output node on the formula

1

2
∗ (t(Xp ∗ on)− y(Xp, on))2 (9.3)

is used. To get the average error of the whole network the following python code can
be used:

1 sum = 0
2 for p in range(0, len(trainging_vector)):
3 for n in range(0, output_nodes):
4 sum += 1/2 * ((t(p, n) - y(p, n)) ** 2)
5 average_error = sum / len(training_vector)

Listing 9.1: An example python code that calculates the average error of a given NN

To get the change for a specific weight Wi the formula

α ∗ s′(a(Xp, on)) ∗ (t(Xp, on)− y(Xp, on)) ∗Xp(i, on) (9.4)

can be used where α represents the learning rate, a number 0 < α < 1, which represent
how radical the NN changes the weights and Xp(i, on) represents the weight i for an output
node on with the specified input Xp.

Based on this information the backpropagation algorithm can be explained further
more. For the backpropagation algorithm it is important to distinguish between input
nodes i, output nodes j and hidden nodes n. The backpropagation especially concerns
itself with the difference between t and y. The change to a weight Wi for a hidden node is
defined as:

α ∗ s′(a(Xp, on)) ∗ d(n) ∗Xp(i, on) (9.5)

where d is a function that determines how much the hidden node contributes to the
overall error. d returns numbers close to zero or zero if it doesn’t influence the error of the
NN or numbers close to one if it is highly influential.
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The contribution to the error of an output node j is represented by d(j) and the
influence a hidden node has on an output node is represented by the function W (n, j). As
any hidden node n may influence any output node j the actual influence of the hidden
node can be written as

∑
d(j) ∗W (n, j) for all j. The training rules with backpropagation

can then be divided into two parts:
1. The changes in weight between any hidden node n and output node j: α∗s′(a(p, n))∗

(t(p, n)− y(p, n)) ∗Xp(n, j)

2. The change of weight between and input node i and an output node j: α∗s′(a(p, n))∗
(
∑
d(j) ∗W (n, j)) ∗Xp(i, n)

3

9.2.2 Types of neural networks

The following sections will describe the different variations of NNs.

Convolutional neural networks

Convolutional neural networks (CNN ) are a certain type of NN especially suited for image
classification as they have been inspired by the animal visual cortex. The CNN consists of
multiple layers. While the layers at the beginning are extracting basic features of an image
like vertical or horizontal lines are the layers towards the end of the network responsible
to combine the simple features to more complex attributes. Each layer of the CNN has a
specific type that are elaborated in detail below.

One of them is the convolutional layer that applies a function to its input. The convo-
lution layer takes it input and separates it into a grid. Afterwards the node applies a filter
- a matrix of arbitrary size - to the input and returns the output to the next node.

Another type is the pooling layer. The pooling layers are used to reduce the amount of
features from the previous node. A common example of a pooling layer is a max pooling
layer. The max pooling layer also divides it input into sections and returns the biggest
number of the section to next layer. An example is illustrated below:


33 14 46 68
22 16 33 20
56 54 75 17
40 51 82 58

→ [
33 68
56 82

]
(9.6)

An example for a feature map with an applied filter that extracts vertical lines can be
seen below in figure 9.2.

The last special type is the fully connected layer. As the name suggests this layer
connects every input node with every output node. A figurative example is the Figure 9.1
where each layer is fully connected to its previous input layer4.

9.3 Object Detection with the You only look once (YOLO)
Approach

You only look once (YOLO) is a new approach to the field of object detection with the help
of machine learning. YOLO is distinct to other machine learning algorithms as the general

3IBM, An introduction to neural networks.
4IbM, Deep learning architectures.
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Figure 9.2: An image after it has passed through a pooling layer. The filter of the pooling
layer has extracted the vertical lines (white) whereas horizontal lines have been darkened.

algorithm is different. YOLO is modeled after humans. Humans are capable to look at an
image and can relatively easy detect multiple objects in a short amount of time. YOLO
uses a similar approach and combines two different activities in one step. The convolutional
neural network (CNN ) that powers the YOLO algorithm is only allowed to take one look
at a given picture. It then predicts the image classes and possible object bounding boxes
in one step and then combines the result of these two activities to generate the final object
classifications. As the CNN looks at the picture as a whole unlike other approaches like
regional proposal networks it is possible for the neural network to minimize false detection
in the background as the CNN is capable to understand the context of the whole picture.

9.3.1 How YOLO works

This section will elaborate the general algorithm used in the YOLO approach in greater
detail.

The system separates the image into a grid consisting of the same amount of rows and
columns. Each field in the grid then predicts a varying number of bounding boxes and a
confidence of how certain it is, that the bounding box is accurate and contains an object.
So formally the confidence can be defines as following:

confidence = P (O) + IoU truthprediction (9.7)

Whereas P (O) represents the probability that there is an actual object in the cell and

IoU truthprediction =
truth ∪ prediction
truth ∩ prediction

(9.8)
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represents the accuracy of the predicted bounding box. If there is no object in a cell
the confidence should be equal to zero. Each predicted bounding box consists of several
predictions: The x and y coordinates of the box relative to the grid cell, a height and a
width relative to the whole image, the confidence as defined above and a class probability
C = P (Classi|Object).

9.3.2 Drawbacks of YOLO

Although YOLO is a promising algorithm for the area of object detection it also imposes
some major drawbacks. The biggest of them are the big hardware demands as the algorithm
requires and NVidia GForce Titan X to achieve a Frame rate of up to 45 frames per second.
The other problem is that the bounding boxes are crutial for the classification of the object.
So if there are too many small objects in one grid cell the network can’t distinguish each
of those objects and may predict wrong classes for those objects56.

9.4 Object detection with Faster R-CNN

Faster R-CNN is a NN designed for object detection and classification. It was introduced in
the year of 2016 and builds upon the achievements and experiences of Fast R-CNN. Faster
R-CNN combines a region proposal network (RPN ) and the Fast R-CNN detector that
classifies the objects. The RPN is a fully connected CNN and is used to detect regions of
interest (RoI ). The RPN returns beside the proposal of the RoI also the objectness score
that indicates how confident the NN is, whether there is an object or not. The Fast R-CNN
object detector then looks at the region of interest and tries to classify the objects in the
RoI.

Figure 9.3: A diagram visualizing the workings of Faster R-CNN. The input image gets
passed through a CNN that builds a feature map. The RPN uses the feature map to generate
the RoI and the last layer then classifies the objects.

5Redmon, Divvala, et al., “You Only Look Once”.
6Redmon and Farhadi, “YOLOv3: An Incremental Improvement”.
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9.4.1 Drawbacks of Faster R-CNN

The biggest drawback of RPNs and also Faster R-CNN is that the RPN tends to falsely
detect objects in the background of the image as it always only looks of part of the image
and not the image as a whole. Therefore there tend to be problems with landscapes7.

9.5 Performance comparison

The following sections will show various performance metrics of the previously discussed
implementations of neural networks.

The tests were performed on a Laptop equipped with an Intel Core i7-4700MQ with a
frequency of 2.40GHz and 8GB of RAM. The test video that lasts 125 seconds was from a
robotics competition provided by the robotics team items from the HTL Wiener Neustadt.

9.5.1 Performance of YOLO

This section will asses the performance of an implementation of the YOLO algorithm.

Figure 9.4: Various boxplot showing the performance of the YOLO implementation. The
top-left diagram shows training time. The top-right the average confidence and the boxplot
visualizing the detected objects. The bottom right shows the frames per second in a boxplot.

The diagram above show that the training time with a mean of 17 seconds is relatively
high. The average confidence is very stable at 67.5%. The detected objects are very high
with around 4500 to 4700. The frames per second are also relatively high with around
0.375.

7Ren et al., “Faster R-CNN”.
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9.5.2 Performance of RPN

This implementation of an RPN uses Google’s machine learning framework TensorFlow to
provide the classification.

Figure 9.5: Various boxplot showing the performance of the RPN implementation. The
top-left diagram shows training time. The top-right the average confidence and the boxplot
visualizing the detected objects. The bottom right shows the frames per second in a boxplot.

The performance of YOLO and RPN are significantly different. Whereas YOLO had a
long training time with around 17 s it is comparatively short with RPN with around 6 s.
RPN is also more confident with its predictions with around 75% confidence. Compared
to YOLO RPN hasn’t detected as many objects in the video. Only around half as much
objects have been detected by the RPN. Compared to YOLO the frames per second are
quiet low. The RPN neural network has a maximum of 0.196 frames per second (fps) that
is less than half of the highest fps of YOLO.

9.5.3 Algorithm for AUT-AS

To decide which algorithm to use for AUT-AS each metric of the algorithm will be weighted
by a certain amount and the bigger sum is the winner of the comparison.

The team of AUT-AS has selected the confidence of the NN as the number priority. For
that reason the factor has been set the highest. The second most important category are
the frames per second to provide the user with a smooth experience even with the added
processing strain of the image classification. The detected objects have the least priority in
this comparison because in real-world use it is not of such high priority to detect as many
objects as possible but rather to be correct with the classifications. Although the training
time has been previously mentioned it has been excluded from this table as the impact
over the long run of the robot isn’t really important.
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The Factor is a value assigned to each item based on the priority of the element. The
most important aspect has the highest factor and the value gets decreased the lesser im-
portant each element gets.

YOLO RPN
Metric Value Factor Product Value Factor Product

Average confidence 67 .435% 3 202.305 75.3638% 3 226.09164
FPS 0.3754 2 0.7509 0.19182 2 0.38364

Detected objects 4618.4 1 4618.4 3000.2 1 3000.2
Sum 4821.4559 3226.675284

Therefore for all further image classification and object detection tasks will be fulfilled
with the YOLO algorithm as the result clearly shows that YOLO won with a reasonable
margin.

Although the FPS seem very low with less than one, it has to be noted that object
recognition is a very computational expensive task that requires a lot of resources. For
example the official YOLO paper made their benchmarks with an Nvidia Geforce Titan X
which is a lot faster than the one in the laptop where the test was made8.

8Redmon and Farhadi, “YOLOv3: An Incremental Improvement”.



Chapter 10

AUT-AS Application

Author: Simon Königsreiter
A sub-goal of this thesis is, to develop an interface for operators to interact with the

AUT-AS robotic platform. This chapter outlines the advantages and disadvantages of dif-
ferent approaches for developing cross-platform applications.

10.1 Native Apps

One way to implement the app for AUT-AS would be the native approach. When writ-
ing native apps the main benefit is improved performance of the application. The biggest
downside on the other hand is an increased development effort, as each mobile platform
has its own programming language with Android being Java, Kotlin or C++ and iOS
using Objective-C or Swift. This makes the application not very portable across different
operating systems. The improved performance gain is especially important in hardware
demanding application like mobile games. However, as the hardware requirements for the
AUT-AS application aren’t high and the enormously increased development effort to main-
tain several code-bases is too much for one developer to handle, the decision was made to
discard this approach12.

10.2 Hybrid Apps

One approach to build cross-platform applications for mobile devices and desktop devices
are hybrid apps. These apps function like native apps but instead of the operating system’s
native language, web languages such as HTML, JavaScript and CSS are used. Because
they are not written in the operating system’s native language it is necessary to wrap the
application in a stripped down browser which can be barely noticed during everyday usage.
This has the great advantage, that the mobile apps can be installed from the app store
just like every other native app. The biggest downside on the other hand is the relatively
low performance compared to native apps and the lack of access to features like the file
system. Although it is possible to overcome these barriers, it is not as easy as with native
interfaces to the Operating System3.

1Google, Application Fundamentals.
2Apple Inc., Develop - Apple Developer .
31&1, Hybrid apps – combining the best of web and native apps.
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10.3 Web Apps

The last approach to building cross-platform mobile applications is a web app. This ap-
proach utilizes HTML, CSS and JavaScript to build webpages. Web apps have the great
advantage that every device which has a web browser can access the app. It also reduces
development costs as only one version of the application has to be developed which can be
used from every device. Another feature of web apps is the ability to quickly present the
newest versions to the consumers as updates are automatically downloaded when loading
the web page. However, this also leads to several disadvantages. The biggest problem is the
fact that most modern browsers are sandboxed. This means that web applications can’t
access features of the device unless the browser has implemented a way for the app to use
these features4.

Native App Hybrid App Web App
Language Platform’s native language HTML, CSS, JavaScript HTML, CSS, JavaScript

Development effort High Medium Low
Performance High Medium Medium
Portability Not portable Partially Portable Portable

Table 10.1: A table comparing the various app types5.

Due to the tremendously increased development effort of native apps, this approach
been discarded and due to the familiarity of the team with web apps it has been decided
to implement the AUT-AS mobile application as a web app.

10.4 Comparison of JavaScript frontend frameworks

To improve the development speed and overall quality of the application the team has de-
cided to use a JavaScript framework to create the app. The following sections will compare
the three most popular client side JavaScript (JS) frameworks.

10.4.1 Angular

Angular is an open source framework for mobile and desktop web applications that is de-
veloped and maintained by Google. It is in development since 2010 and it’s most recent
version is version 7. It uses TypeScript which is a superset of JS with static typing. Angular
in general is a very opinionated framework which means that the framework makes many
decisions for you. This makes it especially easy as every Angular project has the same file
structure. As Angular is comparatively the largest framework in terms of built-in features,
with some of them beeing routing, seperation of concerns and dependency injection. An-
gular’s performance is quite good but the biggest downside to the framework is it’s large
file-size compared to some of its competitors.6

10.4.2 React

React is a JS user interface library backed by Facebook which is significantly smaller than
Angular. React focuses exclusively on the presentation of the application which means it

4Salesforce, Native, HTML5, or Hybrid .
5Mitch Pronschinske, The State of Native vs. Web vs. Hybrid - DZone Mobile.
6Vue.js, Comparison with Other Frameworks — Vue.js.
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doesn’t include libraries for making HTTP calls to remote services. React has a relatively
good performance as it uses a virtual DOM to efficiently update it’s elements as efficient as
possible. Although it is not efficient because when a change is detected all subcomponents
have to be re-rendered. React also makes heavy usage of JSX is an extension for JavaScript
which combines HTML and JS more closely. It is a relatively small library and doesn’t
provide anything but the basics to construct a user interface7.

10.4.3 VueJS

Vue is a reactive JS client-side framework which is also mainly concerned with the pre-
sentation of user interfaces. Unlike the other two frameworks it isn’t backed by one large
company. It’s most recent major version is version 2 which was released in 2016. Vue is
very efficient in updating the user interfaces thanks to it’s reactivity and the virtual DOM.
When the state of one component changes it will automatically identify it’s dependencies
which makes it very efficient to react to state changes. Although Vue is mostly concerned
with the user interface presentation it also has officially supported companion libraries for
routing and state management. Vue’s size is close to React’s8.

10.5 Description of VueJS

Due to the previously mentioned points and the familiarity of the team members with
VueJS the team has decided to use VueJS to implement the user interface. The following
sections will describe VueJS thoroughly.

10.5.1 Components

VueJS (Vue) uses so called components to design the user interface. Components are
reusable units and can be used just like normal HTML but they can be extended with
custom properties and event listeners. Components can be defined in a single file and are
therefor called Single-File Components. Single-File Components have the great advantage
that everything related to a component can be found at the same place. The following
piece of code describes a simple ToDo item in a ToDo List:

1 <template>
2 <li>{{ tag }}: <slot></slot></li>
3 </template>
4
5 <script>
6 export default {
7 props: [ "tag" ],
8 data() {
9 return {};

10 }
11 }
12 </script>

Listing 10.1: An example of VueJS’ template system.

And to use this component from another component it would look like this:

7Vue.js, Comparison with Other Frameworks — Vue.js.
8Vue.js, Introduction — Vue.js.
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1 <template>
2 <ul>
3 <todo-item tag="Shopping">Buy milk</todo-item>
4 </ul>
5 </template>
6
7 <script>
8 import TodoItem from "TodoItemComponent.vue";
9

10 export default {
11 components: {
12 "todo-item": TodoItem
13 },
14 data() {
15 return {};
16 }
17 }
18 </script>

Listing 10.2: An example showing the use of a custom component with VueJS.

The use of components makes it easy to redistribute components as component libraries
for other developers to use and it also makes the code more readable as the tag-names (e.g.:
todo-item) are more descriptive910.

Vue’s template tag

The <template> tag in Single-File Components is used describe what should be actually
rendered for a component. Inside the <template> any valid HTML can be used and some
extra special things from Vue itself. By default Vue can dynamically bind HTML attributes
to dynamic data from the components <script> part. This can be achieved with the v-
bind directive. There is also a shorthand notation instead of v-bind by simply prefixing the
attribute with a colon. Inside Vue’s template it is also possible to dynamically insert text
with the mustache syntax which can be used with to curly braces. This makes it possible
to insert text dynamically into the component.

1 <template>
2 <a :href="linkTarget">{{ linkText }}</a>
3 </template>
4
5 <script>
6 export default {
7 data() {
8 return {
9 linkTarget: "https://google.com/",

10 linkText: "Google"
11 };
12 }
13 }
14 </script>

If now one of the properties linkTarget or linkText would change, Vue would automat-
ically update the values in the link thanks to it’s reactive nature11.

9Vue.js, Single File Components — Vue.js.
10Vue.js, Components Basics — Vue.js.
11Vue.js, Components Basics — Vue.js.
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Vue’s script tag

The <script> tag is used in a Single-File Component to export all the information the
template needs to work. Inside the exported object can be various pieces of information:

• props: This can be either a list, or an object that describes what properties can be
passed to the component. When a list is used to describe the properties only the
name can be specified. When an object is used it is also possible to define the data-
type, whether the property is required or not or even a validator can be specified
that validates the input.

• data: This is a function that returns an object which describes the initial state of the
component.

• computed : These are similar to normal properties but are actually cached functions.
Computed instance variables are used in templates to reduce verbosity.

There is a variety of additional options that can be defined in the <script> tag12.

10.6 Vue’s companion libraries

Vue comes with two officially developed companion libraries. This section will provide a
short introduction for Vue’s state management library Vuex and the official routing library
vue-router.

10.6.1 Vuex

In larger Applications it is a difficult problem to manage shared state. The only options to
implement shared state without a store pattern is to pass props to the components which
is very tedious and poses new challenges when working with sibling elements. Therefor
Vue provides the Vuex library which makes it easy to manage shared state. The Vuex store
can be injected into every component and each mutation to the store’s state has to be
commited. This makes it easier to debug applications and it also makes the program easier
to manage as each state modification can be explicitly tracked. Components using Vuex
can access the global store via the this.$store variable. Vuex differentiates between two
different kind of state changes: mutations and actions. Mutations are the only functions
that can directly mutate the global state and have to be synchronous. Actions on the other
hand can be asynchronous but they can’t directly mutate the states and have to invoke
mutations instead. Vuex follows Vue’s reactive nature and therefor as soon as the stores
state changes it will automatically trigger a re-render of all the depending components.
For a visualization of VueX please see figure 10.113.

10.6.2 vue-router

The second library which is officially supported by Vue is the vue-router. When using
the router there is a special tag named <router-outlet> which indicates that the routed
component should be displayed at the given position. Routes can be defined as an array
with objects that map the path to some component:

Paths can be referenced with the <router-link> tag where the attribute to specifies the
route. Vue’s router also supports dynamic routes. Dynamic elements in a route are prefixed
with a colon and can be accessed in the component via the this.$route.params object14.

12Vue.js, API — Vue.js.
13Vue.js, Vuex Documentation.
14Vue.js, Vue Router .
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Figure 10.1: A graphic showing the relation of actions, mutations and state with the
components.

1 const routes = [
2 { path: "/foo", component: FooComponent },
3 { path: "/bar", component: BarComponent }
4 ];

Listing 10.3: A code snippet defining two routes. The path "/foo" will render the
FooComponent and the "/bar" path will render the BarComponent.

10.7 Exposing diagnostic values of the robot via HTTP

To integrate the AUT-AS platform with external monitoring tools, the team has decided
to expose internal metrics via the Hyper Text Transfer Protocol (HTTP) and JavaScript
Object Notation (JSON ). HTTP is a widely used protocol in the world wide web that is
often combined with JSON as it is tightly integrated with JavaScript. JSON has the big
advantage over other data formats like the eX tensible M arkup Language (XML) that it is
more readable. An example showing how a mmonitoring response in XML could look like
is listed below:

The same diagnostic message in the JSON format can be found below in listing 10.6.
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1 <host name="Ubuntu_Sascha">
2 <entry key="Core 1 Temperature" value="0.0DegC" />
3 <entry key="Time Since Update" value="3.78194904327" />
4 <entry key="Update Status" value="OK" />
5 <entry key="Core 0 Temperature" value="47.0DegC" />
6 </host>

Listing 10.4: An imaginary response in XML from diagnostic API

10.7.1 A brief introduction to JSON

"JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy
for humans to read and write"15. This citation is a good description of JSON. JSON was
designed to be written and read by humans but it is also suited for communication between
various programming languages. JSON has five fundamental data-types:

• Object: An object is a set of key-value pairs each separated by a comma. An object
begins with an opening curly brace and ends with an closing curly brace.

• Array: An array is a collection of value whose order is fix. It begins with an opening
square bracket and ends with an closing square bracket and each value is separated
by a comma.

• String: A string is surrounded by double quotes and contains an arbitrary number
of unicode characters.

• Number: A number is a normal number, either an integer or a floating point number.
• Value: A value is either one of the previously mentioned types or the value true,
false or null which represents no information.

16

10.7.2 Description of the API

The Application Programming Interface (API ) is exposed through a Python web server
that uses the Bottle library. The API exposes four basic HTTP enpoints:

1 /
2 /<category>
3 /<category>/<hostname>
4 /health

Listing 10.5: A list of the various routes of the API.

• / : This is the root path of the API and returns all the available information at the
time of the request. It doesn’t filter by any criteria.

• /<category>: This endpoint returns all the available information for the given cate-
gory <category>.

• /<category>/<hostname>: This endpoint filters by the category first and afterwards
it applies the given <hostname> as the second filter.

• /health: This is a very simple endpoint that checks for the general availability of the
robot and always returns UP as long as the robot is reachable over the network.

15ECMA_JSON_nodate.
16ECMA, JSON .
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Example

An exemplary call to the API route /CPU_Temperature may return the following JSON:

1
2 {
3 "Ubuntu_Sascha": {
4 "Core 1 Temperature": "0.0DegC",
5 "Time Since Update": "3.78194904327",
6 "Update Status": "OK",
7 "Core 0 Temperature": "47.0DegC"
8 }
9 }

Listing 10.6: An example response in JSON to the diagnostic API



Chapter 11

Conclusion

11.1 Image Classification and Recognition

Author: Simon Königsreiter
Although ROS makes it very easy to integrate image classification with the help of

neural networks there are still some problems regarding the different algorithms. The major
problem is that the package providing the YOLO implementation uses its own set of
messages. This is against the ROS paradigm to use common messages so it is easy to
change the implementation depending on the problem. The officially provided TensorFlow
object detector uses the de-facto standard vision messages that are used by a lot of projects.

Besides that YOLO is a very fast and accurate object detection algorithm that takes
a completely new approach compared to its competitors. But to actively use the image
classification especially on the AUT-AS platform it is necessary to provide better hardware
as the current system is unusable with the classification system running.

11.2 Interfacing with ROS via the RobotWebTools

The RobotWebTools are a good collection of JavaScript libraries that enables developers
to integrate ROS with the world wide web. But there are various problems regarding the
RWTs as soon as the application goes beyond the simple publication of messages.

First and foremost is the lack of documentation and the lacking examples that only
showcases the simplest types of applications. Another problem is the difficulty to interact
and customize with the classes of the library. Especially the provided maps lack the ca-
pabilities to customize the output and visuals of the map to integrate it better into the
application.

11.3 Festo Robotino - Locomotion

The Festo company has made a smart decision by designing the Robotino as an omnibot.
This gives the robot a high degree of maneuverability and through the help of the integrated
rotary encoders it is possible to rudimentarily locate the robot relative to its starting
position. One downside of the wheels is the fact that they are fixed within the frame and
there is no possibility add a suspension to the bot. This creates challenges when the robot
has to drive over a doorstep.

56
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11.4 Festo Robotino - Software

Author: Alexander Lampalzer
Overall, working with the Festo Robotino was a very bumpy and rough experience -

mainly due to the fact, that the pre-installed operating system was released in 2014, which
is at the time of writing 5 years old and 4 generations behind Ubuntu 18. Upgrading this
operation system to the newest version manually is very complicated and the latest release
by Festo (1.2.4) is still based on Ubuntu 14.04. The performed upgrade to 16.04 allows
future use of the containerization software docker. Furthermore, ROS was installed and
configured for network-use, which provides a great framework for this diploma thesis and
future projects to build upon. Performance wise, it is extraordinary, that the robot contains
a fully functional x64 embedded processor. Often, robotics systems build upon an ARM
architecture, which introduces a lot of complexity, because of the architectural change and
the necessity or re- or cross-compile. To conclude this section, overall the Festo Robotino
is a great platform for use in the educational sector, because it provides a wide range of
programming interfaces (C, C++, Java, .Net, ROS, LabVIEW, MATLAB, ...) and when
upgraded to the newest software, it is capable of running highly sophisticated algorithms.
Last, but not least, the robotino has two PCIe extension slots, that could be utilized in the
future, when hardware upgrades, such as a graphics processing unit (GPU), are needed.

11.5 Sensors

Overall, the chosen low-cost sensors have provided a great experience. However the utiliza-
tion of these sensors also hasn’t come without flaws. First of all, the YDLIDAR X4 LIDAR
sensor is supposedly capable of 12Hz. In reality, it is not possible to change the rotational
frequency with the included components, but rather it is necessary to send certain signals
over an unconnected port, according to the documentation, which is non-trivial. All in all,
the provided 7Hz frequency, the accuracy and maximum distance make this sensor an ap-
pealing low-cost option for getting started - and this with a relatively low price. Moreover,
the ROS community has developed a very capable, but not flawless, driver. Re-writing this
driver could be a good introduction for students on understanding and implementing I2C
communication protocols and ROS nodes - for the upcomin mayor release of ROS, ROS2
there is no dedicated driver available, at the time of writing.

When installed properly and after several weeks of debugging and hacking, the Astra
Pro depth camera by Orbbec is a great to work with. It provides a very stable experience
performance-wise and is suited for a range of difficult environmental situations. It is also
capable of displaying the data produced by the IR camera, which is a very bonus. As
mentioned earlier, the initial software-experience of this sensor is very bad, because the
official ROS drivers do not work out of the box and there is no openly available camera
calibration file. For future use, the authors recommend creating a new and separate, open
source driver for this camera, to allow not only the HTBLuVA Wr. Neustadt, but also the
whole ROS community to profit.

The Microsoft "Kinect for XBOX One" sensor, has outstanding performance character-
istics, but is a pain to work with. First of all, both the inbuilt 1080p camera and the 424p
depth camera provide a stable 30 frames per second and this with extraordinarily small
measurement noise. The included 4 microphones are also quite a nice addition. However,
there are a number of concerns, that need to be addressed: Originally, the included USB-
B cable transmits power and data at the same time - modern computers and especially
laptops rarely come with these ports installed and as such, a USB-A to USB-B adapter
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is necessary. This however results in the need for another source of electricity and a such
it is necessary to solder connectors onto the board and transfer power using an external
power supply. Moreover, due to the sheer amount of data transferred, both the receiving
PC, the adapter cable need to be capable of USB 3.0 and a cable with extra shielding
is recommended. For future use, the authors recommend to re-work and open source the
software and provide extensive documentation on how to use this sensor.

11.6 Outlook

As part of this diploma thesis, the AUT-AS platform was developed, which simplifies
the development of ground-based mobile robots, that need exploration and navigation
capabilities. A quantitative analysis of SLAM algorithms was planned, however obtaining
a reliable and accurate ground truth for comparison was more complex than anticipated
and the time needed for this experiment was not available. Furthermore, an analysis of
exploration algorithms would be beneficial.

During the development of this thesis, the authors noticed, that the development of
web-based user interfaces is hindered by a lack of documentation for the "robot web tools".
The development of a new abstraction library for web-based user interfaces would be a
benefit to the whole ROS community - preferably utilizing either VueJS or React.
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