Move client foler

This commit is contained in:
Konstantin Lampalzer 2022-12-17 23:59:06 +01:00
parent 4c24717278
commit c02cfcd71c
75 changed files with 0 additions and 329 deletions

3
docs/.gitignore vendored Normal file
View file

@ -0,0 +1,3 @@
build
logs.db
!lib

20
docs/Makefile Normal file
View file

@ -0,0 +1,20 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = source
BUILDDIR = build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

35
docs/make.bat Normal file
View file

@ -0,0 +1,35 @@
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=source
set BUILDDIR=build
if "%1" == "" goto help
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.http://sphinx-doc.org/
exit /b 1
)
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd

View file

69
docs/source/conf.py Normal file
View file

@ -0,0 +1,69 @@
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath('../..'))
sys.setrecursionlimit(1500)
os.environ["EXTENSIVE_LOGGING"] = "False"
# -- Project information -----------------------------------------------------
project = 'CompLib'
copyright = '2022, Verein zur Förderung von Wissenschaft und Technik an Schulen (F-WuTS)'
author = 'robo4you'
autoclass_content = 'both'
# The full version, including alpha/beta/rc tags
release = '0.2.3'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
'sphinx.ext.autodoc',
'sphinx_rtd_theme'
]
autodoc_mock_imports = ["smbus", "compLib.PCA9685", "RPi",
"pigpio", "flask", "apt", "influxdb_client"]
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = []
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
html_logo = "images/compair-logo-white.svg"
html_theme_options = {
'logo_only': True,
'display_version': False,
}
language = "de"

32
docs/source/faq.rst Normal file
View file

@ -0,0 +1,32 @@
FAQ
###
Was ist das Passwort für die Entwicklungsumgebung?
--------------------------------------------------
``compair``
Wie verbinde ich mich zur Entwicklungsumgebung?
-----------------------------------------------
See :ref:`gettingstarted_codeserver`
Was ist der Benutzername und das Passwort für den Raspberry Pi?
---------------------------------------------------------------
``compair`` ``compair``
Wie aktualisiere ich meine Software?
------------------------------------
.. code-block:: bash
sudo apt update
sudo apt upgrade
sudo update-firmware
Wie kann ich die SD-Karte neu beschreiben?
------------------------------------------
`SD-Karten Image <https://drive.google.com/drive/folders/16lMe-yGphk947L4WPjd4oD8ndY9R1WbA?usp=share_link>`_
Software zum Schreiben der SD-Karte `balenaEtcher <https://www.balena.io/etcher/>`_

View file

@ -0,0 +1,11 @@
.. _gettingstarted_codeserver:
Programmierumgebung
###################
Als Umgebung zur Programmierung des Roboters wird `code-server <https://github.com/coder/code-server>`_ eingesetzt, welche bereits am Roboter vorinstalliert ist.
Verbindung zur Entwicklungsumgebung herstellen
----------------------------------------------
Am Roboter wird die IP-Adresse des Raspberry Pi angezeigt. Um nun die Verbindung herzustellen, muss man in einem Web-Browser einfach ``<roboter_ip>:8080`` eingeben.
Das Passwort für Visual Studio Code im Browser ist ``compair``!

View file

@ -0,0 +1,26 @@
Mein erstes Programm
####################
Um mit der Programmierung zu beginnen, müssen wir zunächst einen neuen Ordner erstellen, in dem alle unsere Python-Dateien gespeichert werden.
|codeServerFolder|
Sie können diesen Ordner nennen, wie Sie wollen, für dieses Beispiel heißt er ``compAIR``.
Im nächsten Schritt erstellen wir unsere Datei ``main.py``.
|codeServerFile|
Dann können wir beginnen, unseren Code in diese Datei zu schreiben.
.. code-block:: python
print("Hallo Welt")
Praktischerweise können wir die Datei auch über die VS-Code-Plattform ausführen.
|codeServerRun|
Dann öffnet sich ein Terminal, der die Ausgabe unseres Programms anzeigt.
|codeServerTerminal|
.. |codeServerFolder| image:: images/06_codeServerFolder.png
.. |codeServerFile| image:: images/03_codeServerFile.png
.. |codeServerRun| image:: images/04_codeServerRun.png
.. |codeServerTerminal| image:: images/05_codeServerTerminal.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 239 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 148 KiB

View file

@ -0,0 +1,12 @@
Erste Schritte
##############
.. toctree::
:maxdepth: 5
wifi.rst
codeServer.rst
firstProgram.rst
update.rst
secondProgram.rst
thridProgram.rst

View file

@ -0,0 +1,313 @@
Mein zweites Programm
#####################
Motoren ansteuern
-----------------
Um die Motoren des Roboters zu steuern, müssen wir zunächst das entsprechende Python-Modul am Anfang der Datei importieren. Dann können wir Motor.power(port, power) verwenden, um den Motor zu steuern.
Dies ist auch ein guter Punkt, um sich mit der Dokumentation vertraut zu machen: Besuchen wir https://lib.comp-air.at/lib/Motor.html#compLib.Motor.Motor.power. Hier werden die beiden relevanten Parameter beschrieben.
Als Beispiel wollen wir den rechten Motor für fünf Sekunden auf volle Geschwindigkeit setzen:
.. code-block:: python
:linenos:
# motor.py
import time
from compLib.Motor import Motor
Motor.power(0, 100)
time.sleep(5)
Gerade fahren
-------------
Um geradeaus zu fahren, müssen wir beide Motoren auf dieselbe Geschwindigkeit einstellen.
Aber Achtung! Der rechte Motor muss umgedreht werden! Das liegt daran, dass einer nach rechts und einer nach links zeigt, sie sind also technisch gesehen gespiegelt.
Wenn wir nun diesen Code ausführen, wird der Roboter 5 Sekunden lang vorwärts fahren:
.. code-block:: python
:linenos:
# motor.py
import time
from compLib.Motor import Motor
Motor.power(0, -100)
Motor.power(3, 100)
time.sleep(5)
**Erläuterung**
| In ``Zeile 2`` wird das python-Paket ``time`` importiert. Wir brauchen es später, um auf die Fahrt des Roboters zu warten. Z.B.: ``time.sleep(5)``
| In ``Zeile 3`` importieren wir die notwendigen Funktionen aus dem ``Motor``-Modul der compLib.
| In ``Zeile 5`` stellen wir den ``rechten`` Motor so ein, dass er vorwärts fährt. Da der Motor rückwärts eingebaut ist, müssen wir den Wert auf ``-100`` setzen.
| In ``Zeile 6`` stellen wir den ``linken`` Motor auf Vorwärtsfahrt ein. Hier können wir den Wert ``100`` verwenden, da der Motor in der richtigen Richtung eingebaut ist.
| In ``Zeile 7`` müssen wir warten, bis der Roboter die Fahrbefehle tatsächlich ausführt. In diesem Fall warten wir ``5`` Sekunden lang.
Danach wird das Programm beendet und der Roboter bleibt stehen.
Mehr fahren
+++++++++++
Jetzt ist es Zeit für einige komplexere Bewegungen. Um unseren Code modular und leicht lesbar zu halten, werden wir jede Aktion in eine eigene Funktion packen.
.. code-block:: python
:linenos:
import time
from compLib.Motor import Motor
def driveForward():
Motor.power(0, -100)
Motor.power(3, 100)
time.sleep(2)
In ``Zeile 4`` definieren wir die Funktion ``driveForward()``, die den Roboter mit voller Geschwindigkeit zwei Sekunden vorwärts bewegt.
Jetzt werden wir eine Funktion für das Rückwärtsfahren definieren:
.. code-block:: python
:linenos:
import time
from compLib.Motor import Motor
def driveForward():
Motor.power(0, -100)
Motor.power(3, 100)
time.sleep(2)
def driveBackward():
Motor.power(0, 100)
Motor.power(3, -100)
time.sleep(2)
In ``Zeile 9`` haben wir die Funktion ``driveBackward()`` definiert, die den Roboter zwei Sekunden lang rückwärts fahren lässt.
Jetzt können wir diese beiden Funktionen aufrufen und vorwärts und dann wieder rückwärts fahren:
.. code-block:: python
:linenos:
import time
from compLib.Motor import Motor
def driveForward():
Motor.power(0, -100)
Motor.power(3, 100)
time.sleep(2)
def driveBackward():
Motor.power(0, 100)
Motor.power(3, -100)
time.sleep(2)
driveForward()
driveBackward()
Wenn wir diesen Code ausführen, sollte der Roboter zunächst zwei Sekunden vorwärts und dann wieder zwei Sekunden rückwärts fahren und ungefähr an der gleichen Position wie beim Start anhalten.
Zwischen den Zeilen ``14`` und ``15`` brauchen wir kein ``time.sleep(2)``, da der sleep-Befehl bereits in den Funktionen integriert ist.
Jetzt wollen wir, dass der Roboter erst vorwärts fährt, dann zwei Sekunden stillsteht und dann wieder rückwärts in seine Ausgangsposition fährt.
.. code-block:: python
:linenos:
import time
from compLib.Motor import Motor
def driveForward():
Motor.power(0, -100)
Motor.power(3, 100)
time.sleep(2)
def driveBackward():
Motor.power(0, 100)
Motor.power(3, -100)
time.sleep(2)
driveForward()
time.sleep(2)
driveBackward()
Wenn wir den obigen Code ausführen, bleibt der Roboter nicht zwei Sekunden lang stehen, sondern fährt nach der Funktion ``driveForward()`` noch zwei Sekunden lang weiter. Warum passiert das? Um das zu verstehen, müssen wir wie der Roboter denken!
**Erläuterung**
| 1. (``Zeile 14``) Die Funktion Vorwärtsfahrt wird aufgerufen
| (``Zeile 5``) Motor 1 wird auf -100 gesetzt
| (``Zeile 6``) Motor 4 wird auf 100 gesetzt
| (``Zeile 7``) Zwei Sekunden warten und Motor 1 mit der Geschwindigkeit -100 und Motor 4 mit der Geschwindigkeit 100 bewegen (z.B. vorwärts fahren)
| 2. (``Zeile 15``) Zwei Sekunden warten, die Motoren sind immer noch auf -100 und 100 eingestellt, also fahren wir weiter vorwärts
| 3. (``Zeile 16``) Die Funktion Rückwärtsfahren wird aufgerufen
| (``Zeile 5``) Motor 1 wird auf 100 gesetzt
| (``Zeile 6``) Motor 4 wird auf -100 gesetzt
| (``Zeile 7``) Warte zwei Sekunden und bewege Motor 1 mit der Geschwindigkeit 100 und Motor 4 mit der Geschwindigkeit -100 (z.B. Rückwärtsfahren)
| 4. Das Programm ist beendet, und alle Motordrehzahlen werden auf 0 gesetzt.
Wir sehen also, dass wir die Motoren nach der Vorwärts- oder Rückwärtsfunktion wieder auf Geschwindigkeit ``0`` setzen müssen, wenn wir den Roboter anhalten wollen. Für diesen Anwendungsfall können wir eine neue Funktion ``stopMotors()`` schreiben, die die Geschwindigkeit für Motor ``0`` und ``3`` auf ``0`` setzt:
.. code-block:: python
:linenos:
import time
from compLib.Motor import Motor
def driveForward():
Motor.power(0, -100)
Motor.power(3, 100)
time.sleep(2)
def driveBackward():
Motor.power(0, 100)
Motor.power(3, -100)
time.sleep(2)
def stopMotors():
Motor.power(0, 0)
Motor.power(3, 0)
Wenn wir nun vorwärts fahren, dann zwei Sekunden warten und dann wieder rückwärts fahren wollen, können wir die Funktionen wie folgt aufrufen:
.. code-block:: python
:linenos:
import time
from compLib.Motor import Motor
def driveForward():
Motor.power(0, -100)
Motor.power(3, 100)
time.sleep(2)
def driveBackward():
Motor.power(0, 100)
Motor.power(3, -100)
time.sleep(2)
def stopMotors():
Motor.power(0, 0)
Motor.power(3, 0)
driveForward()
stopMotors()
time.sleep(2)
driveBackward()
Und endlich bekommen wir die Bewegung, die wir uns wünschen.
**More Optimizations**
Während der Code für sehr einfache Bewegungen funktioniert, wollen wir normalerweise nicht, dass unsere Funktionen entscheiden, wie lange wir vorwärts fahren. Vielleicht müssen wir manchmal vier Sekunden vorwärts fahren, und manchmal nur eine Sekunde.
Nehmen wir an, wir wollen vier Sekunden vorwärts fahren. Wir wissen, dass ``driveForward()`` den Roboter zwei Sekunden vorwärts bewegen wird. Also können wir die Funktion einfach zwei Mal aufrufen!
.. code-block:: python
:linenos:
import time
from compLib.Motor import Motor
def driveForward():
Motor.power(0, -100)
Motor.power(3, 100)
time.sleep(2)
driveForward()
driveForward()
Was aber, wenn wir uns nur eine Sekunde vorwärts bewegen wollen? Oder vielleicht drei Sekunden? Mit der Funktion ``driveForward()`` können wir das im Moment nicht machen.
Stattdessen werden wir die Funktion so umschreiben, dass sie einen Parameter akzeptiert, der die Zeit angibt.
.. code-block:: python
:linenos:
import time
from compLib.Motor import Motor
def driveForward(seconds):
Motor.power(0, -100)
Motor.power(3, 100)
time.sleep(seconds)
driveForward(3)
Und mit dieser neuen Funktion können wir drei Sekunden lang vorwärts fahren.
Wie funktioniert das nun?
In ``Zeile 4`` definieren wir die Funktion ``driveForward`` und sagen, dass sie einen Parameter ``seconds`` benötigt. Dieser Parameter ist im Grunde eine Variable, die wir uns zum Zeitpunkt der Definition wie einen Platzhalter vorstellen können. Wenn wir die Funktion definieren, wissen wir noch nicht, welchen Wert ``seconds`` haben wird.
Später in ``Zeile 9``, wenn wir die Funktion aufrufen, übergeben wir den Wert ``3`` an die Funktion und unser Platzhalter ``seconds`` wird den Wert ``3`` haben. Der Roboter wird also drei Sekunden vorwärts fahren.
Vielleicht wollen wir auch, dass der Roboter mit verschiedenen Geschwindigkeiten fahren kann. Wir können also einen weiteren Parameter mit dem Namen ``speed`` anlegen. Dann werden wir ein Programm schreiben, das den Roboter drei Sekunden mit voller Geschwindigkeit und dann fünf Sekunden mit halber Geschwindigkeit fahren lässt.
.. code-block:: python
:linenos:
import time
from compLib.Motor import Motor
def driveForward(seconds, speed):
Motor.power(0, -speed)
Motor.power(3, speed)
time.sleep(seconds)
driveForward(3, 100)
driveForward(5, 50)
In ``Zeile 9`` wird der Platzhalter ``seconds`` auf ``3`` und die ``Geschwindigkeit`` auf ``100`` gesetzt.
In ``Zeile 10`` wird der Platzhalter ``seconds`` auf ``5`` und die ``Geschwindigkeit`` auf ``50`` gesetzt.
**Bewährte Praktiken**
Nun werden wir uns einige weitere Optimierungen und bewährte Verfahren ansehen.
**1. Wir sollten den Schlafbefehl nicht in die Fahrfunktion einbauen.**
Wir haben das bis jetzt getan, um ein Gefühl dafür zu bekommen, wie Funktionen funktionieren, und der Einfachheit halber. Später, wenn Sie anfangen, komplexere Programme zu schreiben, sollten Sie dies vermeiden.
Das Beispiel von oben, in dem wir vorwärts und rückwärts gefahren sind und zwei Sekunden gewartet haben, sollte also wie folgt aussehen:
.. code-block:: python
:linenos:
import time
from compLib.Motor import Motor
def driveForward(speed):
Motor.power(0, -speed)
Motor.power(3, speed)
def driveBackward(speed):
Motor.power(0, speed)
Motor.power(3, -speed)
def stopMotors():
Motor.power(0, 0)
Motor.power(3, 0)
driveForward(100) # Set the motors to forward
time.sleep(2) # Let the robot drive for 2 seconds
stopMotors() # Now stop the robot
time.sleep(2) # Wait another 2 seconds, robot is not moving
driveBackward(100) # Now set the motors to a backwards speed
time.sleep(2) # Let the robot continue driving for 2 seconds
stopMotors() # And finally stop it again
**Warum ist das so wichtig?**
Normalerweise schlafen wir nicht sehr viel und führen in dieser Zeit andere Verarbeitungen durch. Zum Beispiel könnten wir ein Bild von der Kamera verarbeiten oder die IR-Sensoren auslesen. Wenn wir also eine Funktion wie ``driveForward()`` aufrufen, können wir davon ausgehen, dass sie im Hintergrund abläuft und wir andere Aufgaben erledigen, während sich der Roboter bewegt, anstatt nur darauf zu warten, dass er fertig wird.
**2. Fahren Sie nicht zu langsam.**
Wenn du die Fahrgeschwindigkeit auf eine sehr kleine Zahl einstellst, kann es sein, dass sich der Roboter gar nicht mehr bewegt, weil die Motoren eine bestimmte Menge an Energie benötigen, um den Roboter überhaupt zu bewegen.
**3. Fahren Sie nicht zu schnell.**
Wenn du die Fahrgeschwindigkeit auf eine sehr hohe Zahl einstellst (z. B. ``100``), könnte dein Roboter zu schnell für seine Sensoren sein. Dies wird später wichtig sein, wenn wir versuchen, eine schwarze Linie zu erkennen, aber zu schnell über sie fahren.

View file

@ -0,0 +1,70 @@
Mein drittes Programm
#####################
Der offizielle compAIR-Bot ist mit einer Reihe von Sensoren ausgestattet. Die wichtigsten sind die Infrarotsensoren und -sender, die an der Vorderseite des Roboters angebracht sind. Insgesamt gibt es fünf IR-Sensoren.
Um loszulegen, muss man zunächst das entsprechende Modul wie folgt importieren:
.. code-block:: python
:linenos:
from compLib.IRSensor import IRSensor
|irSensor|
Wie im obigen Diagramm zu sehen ist, verfügt jeder Sensor auch über einen entsprechenden IR-Sender / Emitter. Dieser Sender kann mit ``IRSensor.set(port, enable)`` aktiviert werden.
Schalten wir nun alle fünf Sender ein:
.. code-block:: python
:linenos:
from compLib.IRSensor import IRSensor
IRSensor.enable()
Diese fünf verschiedenen Sensoren befinden sich an der Vorderseite des Roboters und sind wichtig, um schwarze Linien zu erkennen.
Es ist sehr einfach, den Wert der Sensoren abzulesen:
.. code-block:: python
:linenos:
from compLib.IRSensor import IRSensor
IRSensor.enable()
if IRSensor.read_all()[0] > 500:
print("high")
else:
print("low")
**Erkennen einer schwarzen Linie**
Um den IR-Sensor zu testen, kannst du deinen Roboter auf eine schwarze Linie stellen. Der Sensor in der Mitte sollte auf der schwarzen Linie liegen.
.. code-block:: python
:linenos:
from compLib.IRSensor import IRSensor
IRSensor.enable()
COLOR_BREAK = 900
if IRSensor.read_all()[2] > COLOR_BREAK:
print("Robot is standing on a black line")
else:
print("Robot is NOT standing on a black line")
Wenn das Programm ausgeführt wird, zeigt es an, dass der Roboter auf einer schwarzen Linie steht, wenn sich der mittlere IR-Sensor des Roboters über einer schwarzen Linie befindet, und es zeigt an, dass der Roboter NICHT auf einer schwarzen Linie steht, wenn sich der mittlere IR-Sensor nicht über einer Linie befindet.
| In ``Zeile 1`` importieren wir das ``IRSensor``-Modul, das zur Kommunikation mit dem IR-Sensor-Board verwendet werden kann.
| In ``Zeile 3`` wird der Sensor mit der Nummer ``3`` aktiviert. Wenn wir einen Sensor nicht aktivieren, können wir ihn nicht in unserem Programm verwenden.
| In ``Zeile 4`` stellen wir einen Farbschwellenwert von ``900`` ein, mit dem wir später prüfen werden, ob der Sensorwert unter oder über diesem Schwellenwert liegt. Unterhalb bedeutet, dass sich eine helle Farbe unter dem IR-Sensor befindet und ein höherer Wert als ``900`` bedeutet, dass sich eine dunkle Farbe unter dem IR-Sensor befindet.
| In ``Zeile 6`` lesen wir den Sensor Nummer ``2`` aus und prüfen, ob der Wert über dem von uns definierten Schwellenwert von ``900`` liegt. Wenn das der Fall ist, hat der IR-Sensor eine schwarze Linie erkannt.
Wir werden nun das Programm so ändern, dass es alle ``0.1`` Sekunden prüft, ob sich eine schwarze Linie unter dem Roboter befindet, und wenn dies der Fall ist, eine Meldung ausgibt.
.. |irSensor| image:: images/07_irSensor.webp

View file

@ -0,0 +1,13 @@
Software Updaten
#################
Da wir die ``compLib``, und die andere Software, welche auf dem Roboter läuft, laufend weiterentwickeln, solltet ihr immer wieder euren Roboter auf die neuste Version updaten. Dazu müsst ihr einfach den Roboter mit dem Internet verbinden und dann diesen Befehl in der Kommandozeile des Roboters eingeben:
.. code-block:: bash
sudo apt update && sudo apt upgrade
Am einfachsten kann das über die Webseite gemacht werden, auf der ihr auch euren Code schreibt. Dazu müsst ihr einfach nur das Terminal (= Konsole) öffnen, dann den Befehl dort hineinkopieren und Enter drücken.
|updatePic|
.. |updatePic| image:: images/09_update.png

View file

@ -0,0 +1,86 @@
.. _gettingStarted_wifi:
WLAN-Verbindung herstellen
##########################
Schritt für Schritt - macOS
---------------------------
1. SD-Karte aus dem Raspberry Pi bzw. Roboter entnehmen.
2. Einstecken der SD-Karte in den Computer
3. Öffnen der SD-Karte mit dem Namen "boot" |bootImage|
4. Generieren des PSK auf `https://www.wireshark.org/tools/wpa-psk.html <https://www.wireshark.org/tools/wpa-psk.html>`_ |pskImage|
5. Öffnen der Datei "wpa_supplicant.conf" auf der SD-Karte
6. Einfügen der Konfiguration. Dabei muss die SSID und der vorher generierte PSK eingesetzt werden ::
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=AT
network={
ssid="EinTollerNameFürDasWlan"
psk="98117b165a48f25cbe36f288ddf597729a40feeea93054c19bfa8e5eab238541"
}
7. Speichern, Auswerfen und wieder in den Raspberry Pi einbauen
8. Starten des Roboters
9. Die IP-Adresse sollte nun am Roboter angezeigt werden
.. |bootImage| image:: images/01_boot.png
.. |pskImage| image:: images/02_psk.png
Weitere Informationen
---------------------
Die "wpa_supplicant.conf" Datei wird beim Start des Rpasberry Pi automatisch an den richtigen Ort kopiert, damit sich der Roboter zum Wlan verbindet.
Eine genauere Anleitung wird vom Hersteller des Raspberry Pi `hier <https://www.raspberrypi.com/documentation/computers/configuration.html#configuring-networking-2>`_ bereitgestellt.
Windows......
-------------
Je nach Betriebssystem und Editor, mit dem Sie die Datei erstellen, könnte die Datei falsche Zeilenumbrüche oder eine falsche Dateierweiterung haben; stellen Sie also sicher, dass Sie einen Editor verwenden, der dies berücksichtigt. Linux erwartet das Zeilenumbruchzeichen LF (Line Feed).
Beispielsweise kann `Notepad++ <https://notepad-plus-plus.org/downloads/>`_ verwendet werden, um die Datei richtig zu speichern.
|notepadImage|
.. |notepadImage| image:: images/08_notepad.png
Fehlerbehandlung
----------------
Sollte es dazu kommen, dass der Roboter nicht automatisch die Verbindung mit dem Netzwerk herstellt, kann eine Kabelgebundene Verbindung zur Diagnose von Fehlern genutzt werden.
Dabei wird automatisch die IP-Adresse der Verbindung "eth" am Roboter angezeigt. Nach der erfolgreichen Verbindung zum Roboter mittels SSH kann die "wpa_cli" zur Fehlerbehandlung verwendet werden:
::
> wpa_cli
wpa_cli v2.9
Copyright (c) 2004-2019, Jouni Malinen <j@w1.fi> and contributors
This software may be distributed under the terms of the BSD license.
See README for more details.
Selected interface 'p2p-dev-wlan0'
Interactive mode
> interface wlan0
Connected to interface 'wlan0.
> scan
OK
<3>CTRL-EVENT-SCAN-STARTED
<3>CTRL-EVENT-SCAN-RESULTS
> scan_result
bssid / frequency / signal level / flags / ssid
68:02:b8:0c:d7:47 2462 -66 [WPA2-PSK-CCMP][ESS] WG
68:02:b8:0c:d7:40 5220 -63 [WPA2-PSK-CCMP][ESS] WG
34:2c:c4:da:dd:b9 5200 -65 [WPA-PSK-TKIP][WPA2-PSK-CCMP][WPS][ESS] WLAN10573403
98:da:c4:e5:21:d0 2437 -57 [WPA2-PSK-CCMP][ESS] WG
34:2c:c4:da:dd:c6 2412 -52 [WPA-PSK-][WPA2-PSK-CCMP+TKIP][WPS][ESS] WLAN10573403
20:83:f8:07:5b:90 2467 -67 [WPA2-PSK-CCMP][WPS][ESS] A1-075b8c
7c:39:53:94:49:82 5280 -77 [WPA2-PSK-CCMP][WPS][ESS] A1-944980-5G
7c:39:53:94:49:81 2427 -68 [WPA2-PSK-CCMP][WPS][ESS] A1-944980
90:fd:73:ac:d3:27 2452 -72 [WPA2-PSK-CCMP][WPS][ESS] Drei_H288A_24G_eKy5
50:e0:39:3c:e5:80 5180 -82 [WPA2-PSK-CCMP][WPS][ESS] A1-393CE57F
90:fd:73:ac:d3:28 5500 -83 [WPA2-PSK-CCMP][WPS][ESS] Drei_H288A_5G_eKy5
68:02:b8:41:42:f9 5180 -84 [WPA-PSK-TKIP][WPA2-PSK-CCMP][WPS][ESS] WLAN18792472
34:2c:c4:30:3c:65 5180 -89 [WPA-PSK-TKIP][WPA2-PSK-CCMP][WPS][ESS] witt
fa:0d:ac:d3:40:d4 2467 -80 [WPA2-PSK-CCMP][WPS][ESS][P2P] DIRECT-d4-HP M28 LaserJet
0e:84:dc:14:ac:27 2467 -85 [WPA2-PSK-CCMP][WPS][ESS][P2P] DIRECT-wo-BRAVIA
>

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 188 KiB

20
docs/source/index.rst Normal file
View file

@ -0,0 +1,20 @@
Dokumentation des Roboters
##########################
.. toctree::
:maxdepth: 2
:caption: Contents:
Inhalt
******
.. toctree::
:maxdepth: 1
:glob:
gettingStarted/index.rst
software/installation.rst
faq.rst
other/usage
lib/index.rst
other/hardware.rst

View file

@ -0,0 +1,13 @@
.. _lib_doubleElim:
Double Elimination
*******************
Dokumentation des Double Elimination Moduls
============================================
.. autoclass:: compLib.DoubleElimination.Position
:members:
.. autoclass:: compLib.DoubleElimination.DoubleElim
:members:

View file

@ -0,0 +1,10 @@
.. _lib_encoder:
Encoder
*******
Dokumentation der Klasse
========================
.. autoclass:: compLib.Encoder.Encoder
:members:

View file

@ -0,0 +1,10 @@
.. _lib_irsensor:
Infrarot Sensoren
*****************
Dokumentation der Klasse
========================
.. autoclass:: compLib.IRSensor.IRSensor
:members:

View file

@ -0,0 +1,50 @@
.. _lib_motor:
Motoren
********
Dokumentation der Klasse
========================
.. autoclass:: compLib.Motor.Motor
:members:
Genauere Informationen
======================
Power vs Speed vs PulseWidth
-----------------------------
Zur ansteuerung der Motoren kann entweder ``Motor.power(...)``, ``Motor.speed(...)`` oder ``Motor.pulse_width(...)``` verwendet werden.
Der Unterschied der 3 Funktionen liegt dabei in der Einheit des 2. Parameters.
| Bei ``Motor.power()`` wird dabei ein Wert zwischen -100% und 100% der maximalen Geschwindigkeit angegeben.
| ``Motor.speed()`` verwendet die Encoder um die Geschwindigkeit der Motoren mittels closed-loop zu steuern. Diese Funktion sollte nur verwendet werden, wenn ``Motor.power()`` nicht zur Ansteuerung ausreicht.
| ``Motor.pulse_width()`` stellt die Geschwindigkeit des Motors mittels der Pulsbreite der PWM-Steuerung des Motors ein. Diese Funktion ist so nah an der Hardware wie möglich und sollte auch nur verwendet werden, wenn es einen expliziten Grund dafür gibt.
Normal vs Multiple
------------------
Der Aufruf der funktionen kann entweder über ``Motor.power(port, percent)`` oder ``Motor.power((port, percent), (port, percent), ..)`` erfolgen.
Der zweite Aufruf ermöglicht dem Entwickler dabei beide Motoren in einem Aufruf anzusteuern und bringt einen kleinen Vorteil in der Leistungsfähigkeit der Software.
Beispiele
=========
Vorwärts fahren
---------------
Mit folgenden Programm drehen sich beide Motoren mit 50% ihrer maximalen Geschwindigkeit.
Dabei ist zu beachten, dass ein Motor in die entgegengesetzte Richtung zum aneren Motor gedreht werden muss, da diese spiegelverkehrt montiert sind.
Zusätzlich ist ein ``time.sleep(5)`` notwendig, welches das Programm für 5 Sekunden pausiert. Diese Pause wird benötigt, da der Roboter automatisch alle Motoren beim Ende des Progammes deaktiviert.
.. code-block:: python
from compLib.Motor import Motor
import time
Motor.power(0, -50)
Motor.power(3, 50)
time.sleep(5)

View file

@ -0,0 +1,13 @@
.. _lib_camera:
Camera und OpenCV
*******************
Dokumentation des Camera Moduls
================================
.. autoclass:: compLib.Camera.Marker
:members:
.. autoclass:: compLib.Camera.Camera
:members:

View file

@ -0,0 +1,36 @@
.. _lib_seeding:
Seeding
*******
Dokumentation des Seeding Moduls
================================
.. autoclass:: compLib.Seeding.Gamestate
:members:
Beispiele
----------
| In ``Zeile 1`` wird das Seeding Modul importiert.
| In ``Zeile 2`` definieren wir dann eine Variable, in der wir den "Seed" des Gamestates den wir erstellen wollten speichern.
| In ``Zeile 3`` erstellen wir dann einen neuen Gamestate mit dem Seed und speichern ihn in die Variable ``gamestate``.
| In ``Zeile 4`` geben wir dann den Gamestate aus, damit wir ihn auf der Konsole ansehen können.
.. code-block:: python
import compLib.Seeding as Seeding
seed = 42
gamestate = Seeding.Gamestate(seed)
print(gamestate)
In der Ausgabe des Print Statements sehen wir den generierten Gamestate.
.. code-block::
Seed: 42
Heu Color: 1
Material Pairs: [[3, 0], [2, 3], [0, 2], [1, 2]]
Material Zones: [2, 1, 3, 2]
Logistic Plan: [12, 13, 12, 13, 10, 11, 13, 10, 13, 12, 11, 10, 11, 13, 10, 11, 12, 11, 12, 10, 12]
Logistic Centers: [[0, 3, 1, 1], [1, 0, 2, 2], [1, 2, 0, 2], [3, 0, 2, 0]]

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 391 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 356 KiB

12
docs/source/lib/index.rst Normal file
View file

@ -0,0 +1,12 @@
compLib
#######
.. toctree::
:maxdepth: 5
classes/Motor
classes/Encoder
classes/IRSensor
classes/Seeding
classes/DoubleElimination
classes/Opencv

View file

@ -0,0 +1,64 @@
.. _other_bardware:
Hardware
########
Sensorarray
***********
|SensorarrayImage|
.. |SensorarrayImage| image:: images/Sensorarray.png
Specs V4
--------
| **Processor:** `STM32G030F6P6 <https://mou.sr/3UxW49B>`_ - 32-bit ARM Cortex M0 CPU @ 64 MHz
| **I/O:** 1x I2C, 1x SWD
| **Sensors:** 5x `QRE1113GR <https://mou.sr/3TWGYdI>`_
Specs V2
--------
| **Processor:** `ATMEGA328P-AU <https://mou.sr/3FxhPC5>`_ - 8-bit CPU @ 16 MHz
| **I/O:** 1x I2C, 1x UART, 1x ISP
| **Sensors:** 5x `QRE1113GR <https://mou.sr/3TWGYdI>`_
Details
-------
Das Sensorarray wird verwendet um Linienen vor dem Roboter zu erkennen. Es agiert als I2C Slave und muss dementsprechend aktiv gepollt werden.
Zusätzlich besteht die möglichkeit alle Emitter zu deaktiviern um einen eventuellen Messfehler durch Sonneneinstralung oder andere Störquellen zu erkennen.
Version 4 unterscheidet sich zu Version 2 im Mikroprozessor, da es zu Lieferengpässen des ATMEGA gekommen ist.
Zusätzlich wurde die möglichkeit alle Emitter einzeln an bzw. auszuschalten entfernt, da diese keinen signifikanten Mehrwert brachte.
Motorboard
**********
|MainboardImage|
.. |MainboardImage| image:: images/Mainboard.png
Specs
-----
**Motor-Treiber:** `LV8548MC-AH <https://mou.sr/3TXbFzu>`_
Details
-------
Das Motorboard kann an einen der 4 Ports am Roboter angesteckt werden und ermöglicht das Ansteuern von Motoren und auslesen von Encodern.
Mainboard
*********
Specs
-----
| **Processor:** `STM32L051C8T6TR <https://mou.sr/3fuaAQv>`_ - 32-bit ARM Cortex M0 @ 32MHz
| **I/O:** 4x I2C (3x Bus 1, 1x Bus 2), 1x 40 Pin GPIO Header, 2x SPI (Verbunden mit GPIO), 4x Motor-/Servo-connector, 1x SWD, 1x USB-C
Details
-------
Das Mainboard wird auf den GPIO-Header eines Raspberry Pi gesteckt und ermöglicht die Steuerung eines Roboters mittels 4 Motor- bzw. Servo-Ports. Der RaspberryPi kommuniziert dabei mittels SPI mit dem Mainboard und steuert die einzelnen Sensoren oder Module an.
Zusätzlich befinden sich auf der Unterseite des Mainboards Lötstellen, welche direkt mit der Stromversorgung der Motoren verbunden sind und geben so die möglichkeit Motoren mit mehr als 5V anzusteuern.

Binary file not shown.

After

Width:  |  Height:  |  Size: 278 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 254 KiB

166
docs/source/other/usage.rst Normal file
View file

@ -0,0 +1,166 @@
.. _other_usage:
Beispiele
#########
Vorwärts und rückwärts fahren
*****************************
.. code-block:: python
import time
from compLib.Motor import *
def forward():
Motor.power(0, -30)
Motor.power(3, 30)
def backward():
Motor.power(0, 30)
Motor.power(3, -30)
def main():
print("hallo ich bin ein roboter beep buup")
forward()
time.sleep(1)
backward()
time.sleep(1)
if __name__ == '__main__':
main()
Eine Linie verfolgen
********************
.. code-block:: python
import time
from compLib.Motor import Motor
from compLib.Encoder import Encoder
from compLib.IRSensor import IRSensor
COLOR_BREAK = 850
DRIVE_SPEED = 35
IRSensor.enable()
def drive(left, right):
right *= -1
Motor.multiple_power((0, right), (3, left))
print(f"{left} {right}")
def follow():
while True:
sensors = IRSensor.read_all()
if sensors[0] > COLOR_BREAK:
# turn left
drive(-DRIVE_SPEED, DRIVE_SPEED)
elif sensors[4] > COLOR_BREAK:
# turn right
drive(DRIVE_SPEED, -DRIVE_SPEED)
else:
# straight
drive(DRIVE_SPEED, DRIVE_SPEED)
if sensors[0] > COLOR_BREAK and sensors[4] > COLOR_BREAK:
break
drive(0, 0)
time.sleep(1)
def main():
follow()
drive(DRIVE_SPEED, DRIVE_SPEED)
time.sleep(0.5)
follow()
drive(DRIVE_SPEED, DRIVE_SPEED)
time.sleep(0.5)
follow()
drive(DRIVE_SPEED, DRIVE_SPEED)
time.sleep(0.5)
follow()
if __name__ == "__main__":
main()
Funktionalität des Roboters überprüfen
**************************************
.. code-block:: python
import time
from compLib.Motor import Motor
from compLib.Encoder import Encoder
from compLib.IRSensor import IRSensor
def testIR():
print("Enabling Infrared Sensor")
IRSensor.enable()
time.sleep(1)
print("Writing sensor values...")
for i in range(0, 50):
print(IRSensor.read_all())
time.sleep(0.1)
print("Disabling Infrared Sensor")
IRSensor.disable()
def testEncoders():
Motor.multiple_pulse_width((0, 50), (3, -50))
print("Writing encoder positions...")
for i in range(0, 50):
print(Encoder.read_all_positions())
time.sleep(0.1)
time.sleep(2)
print("Writing encoder velocities...")
for i in range(0, 50):
print(Encoder.read_all_velocities())
time.sleep(0.1)
Motor.multiple_pulse_width((0, 0), (3, 0))
def testMotors():
print("Setting pulse_with")
Motor.multiple_pulse_width((0, 50), (3, -50))
time.sleep(3)
print("Setting power")
Motor.multiple_power((0, 50), (3, -50))
time.sleep(3)
print("Setting pulse_with")
Motor.multiple_speed((0, 5), (3, -5))
time.sleep(3)
for i in range(0, 100):
Motor.multiple_power((0, i), (3, -i))
time.sleep(0.1)
if __name__ == "__main__":
print("Make sure robot is turned on it's back!")
time.sleep(5)
print()
print("----------------- Testing Infrared Sensor -----------------")
testIR()
print()
print("----------------- Testing Encoder -----------------")
testEncoders()
print()
print("----------------- Testing Motors -----------------")
testMotors()

View file

@ -0,0 +1,59 @@
.. _software_installation:
Installationsanweisungen
########################
Diese Anleitung dient dazu die Software auf dem Roboter neu aufzusetzen.
**Im normalen Gebraucht sollte dies jedoch nicht notwendig sein.**
Betriebssystem aufsetzen
========================
Als Basis wird für den Roboter Raspberry Pi OS (64-bit) verwendet. Das 32-Bit Betriebssystem wird nicht unterstützt, da die Software-Komponenten nur für aarch64 bzw. arm64/v8 kompiliert werden.
Genauere Informationen sind `hier <https://www.raspberrypi.com/software/operating-systems/>`_ zu finden.
Bearbeiten der boot-Partition
=============================
1. ``cmdline.txt``
::
console=tty1 root=PARTUUID=21e60f8c-02 rootfstype=ext4 fsck.repair=yes rootwait quiet init=/usr/lib/raspi-config/init_resize.sh
Stellen Sie sicher, dass die folgenden Einstellungen in der ``config.txt`` korrekt gesetzt sind
2. ``config.txt``
::
# SPI
dtparam=spi=on
dtoverlay=spi1-3cs
# Run in 64-bit mode
arm_64bit=1
[all]
[pi4]
# Run as fast as firmware / board allows
arm_boost=1
[all]
start_x=1
gpu_mem=128
dtoverlay=pi3-disable-bt
enable_uart=1
3. Erstellen der leeren Datei ``ssh``, damit ssh beim nächsten Start aktiviert wird
4. Hinzufügen der ``userconf.txt``
::
compair:$6$eh2pkHm18RgYtwiG$PoeabVCH8llbyIio66OefPGXZ2r2BRI2hPHIdkNTBjmiR0lGXsozGyLx0uViOx3bi998syXjSDXkwt0t3x8Bq.
5. Wlan Verbindung einrichten